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CONSTRUCTION OF LOCAL C1 QUARTIC SPLINE
ELEMENTS FOR OPTIMAL-ORDER APPROXIMATION

CHARLES K. CHUI AND DONG HONG

Abstract. This paper is concerned with a study of approximation order and
construction of locally supported elements for the space S1

4 (∆) of C1 pp (piece-
wise polynomial) functions on an arbitrary triangulation ∆ of a connected
polygonal domain Ω in R2. It is well known that even when ∆ is a three-
directional mesh ∆(1), the order of approximation of S1

4(∆(1)) is only 4, not
5. The objective of this paper is two-fold: (i) A local Clough-Tocher refine-
ment procedure of an arbitrary triangulation ∆ is introduced so as to yield the
optimal (fifth) order of approximation, where locality means that only a few
isolated triangles need refinement, and (ii) locally supported Hermite elements
are constructed to achieve the optimal order of approximation.

1. Introduction

Let Ω ⊂ R2 be a connected polygonal domain and ∆ an arbitrary triangula-
tion of Ω. As usual, Srk(∆) denotes the subspace of the space Cr(Ω) of pp (:=
piecewise polynomial) functions with total degree ≤ k over the partition ∆. The
approximation order of Srk(∆) is the largest integer ρ for which

dist(f, Srk(∆)) ≤ C|∆|ρ

holds for all sufficiently smooth functions f , where the constant C depends only on
f and the smallest angle in ∆. Here and throughout, the distance is measured in
the supremum norm ‖ · ‖ and |∆| := sup{diam τ : τ ∈ ∆} denotes the meshsize of
∆.

It is well known that for k ≤ 3r + 1 the optimal approximation order of k + 1
cannot be achieved in general. For instance, de Boor and Jia proved in [2] that if
k ≤ 3r + 1 and ∆ is the three-direction mesh ∆(1), the order of approximation of
the space Srk(∆(1)) is at most k. In this paper, we introduce a local Clough-Tocher
refinement procedure of an arbitrary triangulation ∆ in order to achieve the optimal
(fifth) order of approximation by C1 quartic pp functions over this locally refined

triangulation ∆̂ of ∆. Here, locality means that the Clough-Tocher triangle is
applied only to some isolated triangles in ∆, and as usual, a triangle is called a
Clough-Tocher triangle, if it is subdivided, by using an interior point (such as the
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centroid of the triangle), into three subtriangles. We will also construct certain
locally supported Hermite elements, which will be called star-vertex splines, to
achieve this optimal approximation order.

Generation of an optimal mesh is one of the most important facets in finite
element modeling. The method of local Clough-Tocher refinement of triangulations
introduced in this paper can be undertaken without any element distortion, and
our local interpolation schemes will help in drastically decreasing the computational
complexity as compared with the standard (global) Clough-Tocher scheme.

For a vertex v in the triangulation ∆, the degree of v, denoted by deg(v), is
the number of edges emanating from v. We call a triangulation ∆ an odd- (even-)
degree triangulation if the degree of any interior vertex in ∆ is an odd (even)
number. The organization of this paper is as follows. Our local Clough-Tocher
refinement algorithm will be introduced in §2. We shall see that the number of
local Clough-Tocher refinement steps, if needed, is quite minimal in general. In
particular, triangulations ∆ such as any odd-degree triangulation and the four-
direction mesh ∆(2) do not even need any refinement in order to achieve the optimal
(fifth) order of approximation from S1

4(∆). A refinement of the three-directional
mesh ∆(1) that already admits fifth order of approximation from S1

4 is shown in

Figure 1. In §3, based on this local Clough-Tocher refinement ∆̂ of ∆, we outline
a procedure for constructing a local basis. This local basis will be called a star-

vertex spline basis for the space S1
4(∆̂). An explicit scheme of Hermite interpolation

from the space S1
4(∆̂) that provides the optimal fifth approximation order will be

discussed in §4.

Figure 1. A refinement of the three-direction mesh
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2. A local Clough-Tocher refinement procedure

For a given triangulation ∆ of a polygonal domain Ω ⊂ R2, we need the following
notations.

V : the set of all vertices in ∆,
VI : the set of all interior vertices in ∆,
Vb := V \ VI : the set of all boundary vertices in ∆,
E: the collection of all edges in ∆,
EI : the collection of all interior edges in ∆.

Furthermore, we will use N to denote the total number of triangles in ∆.

We call an interior vertex v a singular vertex if (i) its degree is deg(v) = 4 and
(ii) v is the intersection of two straight line segments. If ej−1, ej , ej+1 are three
consecutive edges with a common vertex v, then the edge ej is called a degenerate
edge with respect to v, provided that the two edges ej−1 and ej+1 are colinear. We
consider

VG: the set of all boundary vertices, all singular vertices, and
all interior vertices with odd degrees,

and we call each v ∈ VG a good vertex . In addition, we will call two vertices in ∆
neighbors of each other if they are connected by some edge in ∆.

We are now ready to describe an algorithm for constructing a local Clough-

Tocher refinement ∆̂ of an arbitrary triangulation ∆ so that the order of approxi-

mation from S1
4(∆̂) is full (i.e., five).

Local Clough-Tocher Refinement (LCTR) Algorithm.
Let V0 = V \ VG.
Dowhile (V0 6= ∅)
Pick any vertex v in V0 and consider its neighbors.
If there exists a neighbor u of v such that u ∈ VG or u is a vertex of a
Clough-Tocher triangle and that the edge [u, v] is nondegenerate with
respect to v,
then delete from V0 both v and all the other neighbors of u connected
to u by nondegenerate edges with respect to themselves.
Call the remaining set the new V0.
Else, pick any neighbor u of v and subdivide any (but only one) triangle
τ ∈ ∆ with edge [u, v] into a Clough-Tocher triangle, and delete from V0 all
the vertices of τ as well as all the neighbors of any vertex of τ connected
to τ by nondegenerate edges with respect to themselves.
Call the remaining set the new V0.
Endif
Enddo

The new partition formed by applying the LCTR Algorithm will be denoted by

∆̂ and called a LCTR of the triangulation ∆. Corresponding to ∆̂, we use V̂ , V̂I ,

V̂b to denote the set of all vertices, the subset of interior vertices, and the subset of

boundary vertices of ∆̂, respectively. We define Ê, ÊI , Êb and V̂G in a similar way.
For any set A, we use the notation #A for the cardinality of A. A rough upper

bound estimate on the number of the refinement steps to form ∆̂ from ∆ is given as
follows. From the LCTR Algorithm, it is clear that only a triangle which has either
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(i) only nonsingular even-degree interior vertices, or (ii) an edge which is degenerate
with respect to a nonsingular interior vertex, may need refinement; and whenever
a Clough-Tocher triangle is formed, at least one nonsingular even-degree interior
vertex is exempt from further consideration in the LCTR Algorithm. Therefore,
the number of refinement steps in the LCTR Algorithm, or equivalently the number

of Clough-Tocher triangles added to ∆ to form ∆̂, is bounded from above by

L = min{`,m},

where ` is the number of nonsingular even-degree interior vertices in ∆ and m is
the number of triangles which have either (i) only nonsingular even-degree interior
vertices, or (ii) an edge which is degenerate with respect to a nonsingular interior
vertex. In particular, if ∆ is an odd-degree triangulation (so that ` = 0), or if ∆ is

a four-direction mesh ∆(2) (so that m = 0), then ∆ = ∆̂. In other words, for these
two types of triangulations ∆, there is no need of refinement at all. A refinement of
a three-direction mesh ∆(1) using the LCTR Algorithm has been shown in Figure
1. Observe that for ∆ = ∆(1), once a Clough-Tocher triangle is formed by a LCTR,
there are generally nine nonsingular even-degree interior vertices that are exempt
from further consideration in the LCTR Algorithm.

In general, according to the LCTR Algorithm, we also see that once a Clough-
Tocher triangle is added to ∆, at least two nonsingular even-degree interior vertices

(in ∆) are changed to odd-degree vertices (in ∆̂). For any v ∈ VI , let deg∆(v) and

deg∆̂(v) denote the degrees of the vertex v in ∆ and ∆̂, respectively. If deg∆̂(v)−
deg∆(v) = 0, then either v ∈ VG or v has a neighbor in VG with odd degree, or
else, v is connected to a vertex of a Clough-Tocher triangle. On the other hand, if
deg∆̂(v) − deg∆(v) 6= 0, then v is a vertex of a Clough-Tocher triangle. Observe
that a vertex with odd deg∆(v) might be changed to a vertex with even deg∆̂(v).
In this case, all the neighbors of v are neighboring vertices of a Clough-Tocher

triangle. In general, any LCTR ∆̂ of ∆ has the following properties.

Properties of ∆̂. Any nonsingular even-degree interior vertex u in ∆̂ has at least

a neighbor of good vertex in V̂G, or else, u is a neighbor of some vertex of a Clough-
Tocher triangle.

Let σ denote the number of singular vertices in ∆. Then it is well known from
[1] that

dimS1
4(∆) = 3#VI + 4#Vb + 3N −#EI + σ = 3#VI + 4#Vb + #E + σ.

On the other hand, since ∆ and ∆̂ have the same number of singular and boundary
vertices, we have

(1) dimS1
4(∆̂) = 3#V̂I + 4#Vb + #Ê + σ.

In this paper, B-net representations of pp functions will play an important role
in our discussion. For completeness, we give a very brief review of this topic ( more
details can be found in [3]). Recall that for any positive integer k, a Bernstein-Bézier
polynomial basis of degree k is given by

Bα,τ (x) =

(
|α|
α

)
ξα, α = (α0, α1, α2) ∈ Z3

+, |α| := α0 + α1 + α2 = k,
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where ξ = (ξ0, ξ1, ξ2) is the barycentric ordinate of x with respect to some triangle
τ = [u, v, w] and

ξα = ξα0
0 ξα1

1 ξα2
2 and

(
|α|
α

)
=

|α|!
α0!α1!α2!

.

The points

xα,τ =
1

k
(α0u+ α1v + α2w), |α| = k,

are usually called domain points of the triangle τ and the set of all domain points
on ∆ will be denoted by X . For each function s ∈ S0

k(∆), let

s(x) =
∑
|α|=k

bα,τBα,τ (x), α ∈ Z3
+, x ∈ τ ∈ ∆.

Then the map

(2) bs ∈ RX : xα,τ 7→ bα,τ , α ∈ Z3
+, |α| = k, τ ∈ ∆,

is called the B-net representation of s. It is well known that to each triangle τ ∈ ∆,
the matrix

(Bα,τ (xβ,τ ))|α|=k,|β|=k

is invertible. Thus, the linear system

∑
|γ|=k

cα,γBβ,τ (xγ,τ ) = δα,β :=

{
1, α = β,

0, α 6= β,

has a unique solution.
Since this linear system depends only on the barycentric coordinates of xα,τ , the

solution {cα,β} is independent of τ . Let [ · ] denote the point-evaluation functional,
namely:

[xα,τ ]f := f(xα,τ ).

Then it is well known (see [4]) that the functionals

Lα,τ :=
∑
|γ|=k

cα,γ [xγ,τ ], α ∈ Z3
+, |α| = k,

form a dual basis of {Bα,τ , |α| = k} in the sense of

Lα,τBβ,τ = δα,β, |α| = |β| = k.

Furthermore, there is a positive constant Ck, depending only on the degree k, such
that

(3) ‖Lα,τ‖ := sup
‖f‖∞=1

‖Lα,τf‖∞ = max
|β|=k

|cα,β | ≤ Ck,

for α ∈ Z3
+, |α| = k.
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From (3) and the fact that bs(xα,τ ) = Lα,τs, we have the following.

Lemma 1. If s ∈ S0
k(∆) and bs ∈ RX is the B-net representation of s, then

‖s‖∞ ≤ ‖bs‖∞ ≤ Ck‖s‖∞.

Now, let τ = [u, v, w] and τ̃ = [u, v, w̃] be two triangles in ∆ with common edge
e = [u, v]. Also let (c1, c2, c3) denote the barycentric coordinates of w̃ with respect
to τ . Then it is well known that the C1-smoothness conditions across the edge e
for s ∈ S1

4(∆) are determined by the relation

(4) bα+e3,τ̃ = c1bα+e1,τ + c2bα+e2,τ + c3bα+e3,τ ,

where α = (αu, αv, 0) ∈ Z3
+ with αu + αv = 3, e1, e2, and e3 denote the standard

unit vectors in R3, and bα,τ = bs(xα,τ ) is the B-net representation of s as defined
in (2).

3. A star-vertex spline basis

A subset P of domain points will be called a determining set of the space Srk(∆)
if and only if every s ∈ Srk(∆) is identically zero whenever its B-net representation
bs vanishes on P . Such a determining set P is called a minimally determining set
if there is no determining set with fewer elements. Clearly, P is a determining set
for Srk(∆) if and only if the linear map s 7→ bs|P , defined on Srk(∆), is one-one; also
P is a minimally determining set for Srk(∆) if and only if this one-one linear map

is also onto. To construct a local basis of the space S1
4(∆̂) for a LCTR ∆̂ of ∆, we

choose a minimally determining set P for S1
4(∆̂) so that the B-net ordinate b(x),

x ∈ X \ P , is dependent only on a very small subset of the B-net ordinates that
are close to x. This has several important practical advantages: first, the cost of
point-evaluation of the interpolant would be less dependent on the amount of data;
second, a local change in the data only alters the interpolant locally; and finally, a
locally supported basis derived from such a determining set would ensure that the

space S1
4(∆̂) has the optimal (fifth) approximation order. To find a determining

set for S1
4(∆̂) with these properties, we introduce the following notation.

For any triangle τ = [u, v, w] ∈ ∆̂ with a given vertex u ∈ V̂ , we define, following
[1], the set

Xn
u,τ = {xα,τ : αu = k − n}

of domain points on τ ∈ ∆̂ associated with the vertex u. In addition, for any u ∈ V̂ ,
we will call

Rnu =
⋃
τ3u

Xn
u,τ = {xα,τ : αu = k − n, τ ∈ ∆̂}

the nth ring around u. The corresponding nth disk around u is defined by

Dn
u =

n⋃
j=0

Rju = {xα,τ : αu ≥ k − n, τ ∈ ∆̂}.

Next, we introduce the notation of some subsets Y nu , u ∈ V̂ , as follows.
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Figure 2. The points in Y nu , n = 0, 1, 2, where u is a singular vertex

(A) Let n = 0, 1. For each u ∈ V̂ , we choose a triangle τ = [u, v, w] attached to u
and define

(5) Y nu := Xn
u,τ .

(B) Let n = 2.

(i) If u ∈ V̂b or if u is a singular vertex (see Figure 2), then we define

(6) Y 2
u := X2

u,τ ∪
(
R2
u ∩ (

⋃
e∈Eu

e)

)
,

where Eu denotes the collection of all edges with common vertex u ∈ V .

(ii) Let u be a nonsingular even-degree vertex in V̂I (see Figure 3 on next page).

According to the LCTR Algorithm, if u ∈ V̂ \ V̂G, then we can choose an edge
e
C

= [u, v] ∈ Eu, which is nondegenerate with respect to u and is not an edge of τ

as already selected in (5) (where τ in (5) is adjusted if necessary) such that either

v ∈ V̂G or else, v is a vertex of a Clough-Tocher triangle. If there is a Clough-Tocher
triangle τu attached to u, then we always select e

C
= [u, û], where û is the interior

vertex in the Clough-Tocher triangle τu. Let E
C

denote the collection of all such
edges e

C
. Then we may define

(7) Y 2
u := X2

u,τ ∪

R2
u ∩ (

⋃
e6=e

C
,e∈Eu

e)

 .
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Figure 3. The points in Y nu , n = 0, 1, 2, where u /∈ V̂G

(iii) If u ∈ V̂I is an odd-degree vertex (see Figure 4), then we define

(8) Y 2
u := R2

u ∩ (
⋃
e∈Eu

e).

Finally, we set

(9) P2
u :=

2⋃
n=0

Y nu , u ∈ V̂ .

Let x
C

denote the center of the edge e
C

and define

(10) P := (
⋃
u∈V̂

P2
u) \ (

⋃
e
C
∈E

C

x
C

).

Then we will see that P is a minimally determining set for the space S1
4(∆̂), as

follows.

Theorem 1. For each b : P 7→ R, there exists a unique g ∈ S1
4(∆̂) such that the

B-net representation bg of g satisfies

bg|P = b.

To prove Theorem 1, we need the following lemma.

Lemma 2. For any u ∈ V̂ , the set P2
u defined in (9) uniquely determines those

functions in S1
4(∆̂) that have identical B-net ordinates on D2

u.
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Figure 4. The points in Y nu , n = 0, 1, 2, with odd values of deg(u)

Proof. The proof of this lemma depends on Lemmas 2 – 4 and 6 in [1]. In fact, it
suffices to show that bs vanishes on D2

u whenever it vanishes on P2
u.

For a boundary vertex u ∈ V̂b = Vb, this follows by the smoothness condition
directly .

Now, suppose that u is either a singular vertex (cf. Figure 2) or a nonsingular
even-degree interior vertex (cf. Figure 3). Since P2

u contains three noncolinear
points in D1

u, bs must be zero on D1
u according to the C1-smoothness condition.

It is easy to see that by the smoothness condition and the fact that e
C

is non-

degenerate with respect to u, the remaining B-net ordinates in R2
u are also zero.

For an odd-degree vertex u (cf. Figure 4), it follows by the smoothness condition
that the zero bs-values on P2

u force all of the bs-values on D1
u to be zero. By

writing out explicitly the coefficients in terms of the ratios of (signed) areas in the
smoothness condition (4), it is easy to verify that the determinant of the coefficient
matrix for the remaining unknowns is 2. Therefore, all the other B-net ordinates
on D2

u must also be zero. This completes the proof of the lemma. �

Proof of Theorem 1. It is easy to see that there are (3 + deg(u)) points in P2
u for

a nonsingular interior vertex u, and (4 + deg(v)) points in P2
v for a singular or

boundary vertex v. Furthermore, it follows from (1) that

#P = 3#V̂0 + 4#Vb + #Ê + σ = dimS1
4(∆̂).

Thus, if we can prove that P is a determining set for S1
4(∆̂), then P is also a

minimally determining set of S1
4(∆̂). For this purpose, let us arrange the vertices

in V̂ in an appropriate order, and extend the B-net ordinates bg from b as follows:
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Figure 5. The determining set (points ?) of D2
u ∪D2

û

(i) For every nonsingular even-degree interior vertex u, which is not a vertex of
any Clough-Tocher triangle, according to our choice of e

C
in (7), the edge e

C
is

nondegenerate with respect to u. By Lemma 2, we can determine the bg-values on
all the domain points in D2

u from the given values on P .

(ii) Each remaining nonsingular even-degree interior vertex u is also a vertex of
some Clough-Tocher triangle τu. According to our choice of e

C
in (7), the edge e

C
is an interior edge of τu and so it is nondegenerate with respect to u. Note that all
the bg-values on

⋃
e∈Eu R

2
u∩e are either given, or else, are determined in (i). Thus,

by Lemma 2, the bg-values on all the domain points in D2
u are determined.

(iii) The remaining vertices are now in V̂G, which contains all the vertices in

V̂ \ V .

From (i), (ii), and the choice of Y 2
u , we see that all the middle points of the

edges have been uniquely determined. Figure 5 illustrates the case of the centroid

û ∈ V̂G of a Clough-Tocher triangle, which is connected to an even-degree vertex
u. Therefore, by Lemma 2, it is clear that the bg-values are uniquely determined
on all the domain points in D2

u.

We see that bg satisfies a C1-smoothness condition on D2
u. Since (#P) =

dimS1
4(∆̂), it is also clear that such an extension is unique. This completes the

proof of the theorem. �

Theorem 1 implies that P is a minimally determining set of S1
4(∆̂). Let

d := dimS1
4(∆̂),

and write

P = {x1, · · · , xd} ⊂ X.
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Also, let {b1, . . . , bd} ⊂ RX be the “dual” of P , defined by the following: (i) bi(xj) =
δij , i, j = 1, . . . , d, and (ii) for each x ∈ X \P , bi(x) is uniquely determined by the
smoothness condition (4) and the procedure described in the proof of Theorem 1.

Let si ∈ S1
4(∆̂), with B-net representation bi, i = 1, . . . , d. Then {s1, . . . , sd} is a

basis of S1
4(∆̂).

We denote by St(u) the closed star of the vertex u in a triangulation ∆ [5, p.135];
i.e., the cell formed by all the triangles in ∆ with u as the common vertex, and

call it the 1-star St
1
(u) of u. For m ≥ 1, the m-star St

m
(u) of u is then defined to

be the union of all the triangles in ∆ which have at least one common vertex with

the (m − 1)-star St
m−1

(u). Similar to the definition of vertex splines, a spline is

called a m-star vertex spline if its support is no larger than St
m

(u) for some vertex
u ∈ ∆. We have the following result.

Theorem 2. The basis {s1, · · · , sd} of S1
4(∆̂) defined as above is a locally supported

basis. Furthermore, for each i = 1, . . . , d, there is some ui ∈ V such that

supp(si) ⊂ St
3
(ui).

Proof. Following the procedure described in the proof of Theorem 1, we can see
that the bi-values of si are uniquely determined on X . We divide our discussion
into three cases.

(i) For xi ∈ P ∩ D1
u, it is clear that supp(si) ⊂ St(u), since bi = 0 outside of

St(u).
Now we assume xi ∈ P ∩R2

u.

(ii) Suppose xi ∈ D2
u and u ∈ V̂G. If xi is not the midpoint of an edge, then

supp(si) ⊂ St(u). On the other hand, if xi is the midpoint of some edge [u, v] and
v is an even-degree nonsingular interior vertex, and if an edge [v, w] is chosen to be
e
C

as in (7) for the vertex v, then

supp(si) ⊂ St(u) ∪ St(v) ∪ St(w) ⊂ St
2
(v).

Otherwise, we have v ∈ V̂G and

supp(si) ⊂ St(u) ∪ St(v) ⊂ St
2
(u).

(iii) Now, suppose u is an even-degree nonsingular interior vertex. If xi is not

the midpoint of an edge in Ê, then supp(si) ⊂ St(u). If xi is the midpoint of some

edge [u, u′] where u′ ∈ V̂G, then similar to (ii), there is an edge [u, v] chosen to be
e
C

as in (7) for the vertex u, and

supp(si) ⊂ St(u) ∪ St(v) ∪ St(u′) ⊂ St
2
(u).

Otherwise, by the choice of the determining set in P , there are edges [u, v] and
[u′, v′] defined to be e

C
as in (7) for the vertices u and u′, respectively, such that v

and v′ are vertices in V̂G and

supp(si) ⊂ St(u) ∪ St(u′) ∪ St(v) ∪ St(v′) ⊂ St
3
(u).
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In summary, for any xi ∈ P , its corresponding si ∈ S1
4(∆̂) has support supp(si) ⊂

St
3
(u) for some vertex u ∈ V . This completes the proof of the theorem. �

From the proof of Theorem 2, we can actually see that S1
4(∆̂) has basis functions

whose support is no larger than

supp(si) ⊂ St(u) ∪ St(u′) ∪ St(v) ∪ St(v′)

for four consecutive vertices v, u, u′ and v′.

4. Interpolation scheme and its approximation power

In this section, we construct an explicit interpolation scheme to prove that the

space S1
4(∆̂) achieves its optimal approximation order. Since the minimally deter-

mining set P contains the domain points in Xn
u,τ , n = 0, 1 for each u ∈ V̂ and some

triangle τ attached to u, the interpolation scheme can be chosen to interpolate the
function values as well as gradient values of a given f ∈ C1(Ω) at each sample
point, as follows.

Interpolation Scheme.

Step 1. For each vertex u ∈ V̂ , let τ = [u, v, w] be the corresponding triangle
associated with Y nu , n = 0, 1, and pu the Hermite polynomial that interpolates f
at the vertex u on τ ; that is,{

pu(u) = f(u),

Dipu(u) = Dif(u), i = 1, 2,

where D1 and D2 denote the directional derivatives along the directions e1 = v−u
and e2 = w − u. Consider the B-net representation

pu =
∑
|α|=k

bpu(xα,τ )Bα,τ ,

and set
bg(x) = bpu(x), x ∈ Y nu , n = 0, 1.

Step 2. Choosing bg(x) = bpu(x), x ∈ Y 2
u , in the order as described in the proof

of Theorem 1, we determine the remaining bg-values on X \ P by applying the
smoothness condition (4).

Denote by T the linear operator obtained by the Interpolation Scheme:

(11) T : f 7→ g, f ∈ C1(∆̂).

It is clear from the construction and the choice of the determining set P that T is
well defined.

Let a denote the smallest angle among all the triangles in ∆̂, and let Ca denote
a constant depending only on a, which may be different from situation to situation.

For a triangle τ ∈ ∆̂ with vertex u, v and w, we define a neighborhood of τ as

(12) Ω(τ) = St
2
(u) ∪ St

2
(v) ∪ St

2
(w).

Then we have the following.
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Lemma 3. The linear operator T defined in (11) satisfies
(i) Tp = p for any polynomial p ∈ π4, and
(ii) ‖Tf |τ‖∞ ≤ Ca‖f |Ω(τ)‖∞.

Proof. The first part of the lemma is obvious by the construction of the operator

T . The supports of the basis functions {si}di=1 of S1
4(∆̂) satisfy

supp(si) ⊂ Ω(τ) for some τ ∈ ∆̂,

from the proof of Theorem 2. Let g(x) = Tf(x) :=
∑
i cisi(x), x ∈ τ , τ ∈ ∆̂.

According to Theorem 2, we have si(x) 6= 0 only if the corresponding domain
point xi lies in Ω(τ). Therefore, the number of nonzero values of the ci’s is
bounded from above by Ca. Moreover, by Lemma 1 and Theorem 2, we have
‖si‖ ≤ Ca maxy∈Ω(τ)∩P |bsi(y)| = Ca. From the definition of si, we also have

ci = bg(xi), xi ∈ P .

Thus, it follows from Lemma 1 that

|Tf(x)| ≤ Ca max
x∈Ω(τ)∩P

|bg(x)| ≤ Ca‖g(x)|Ω(τ)‖ ≤ Ca‖f |Ω(τ)‖∞, x ∈ τ ∈ ∆̂.

The last inequality holds because g|τ is a Hermite interpolation polynomial on each

triangle τ ∈ ∆̂, and that from the B-net representation the operator (on τ) so
defined is bounded by a constant independent of the shape of τ . This completes
the proof of the lemma. �

We are now in a position to prove the following main result of this paper.

Theorem 3. The linear operator T defined in (11) has the optimal (fifth) order
of approximation; that is,

‖Tf − f‖ ≤ Ca‖f (5)‖ |∆̂|5, f ∈ C5(∆̂).

Consequently,

dist(f, S1
4(∆̂)) ≤ Ca‖f (5)‖ |∆̂|5, f ∈ C5(∆̂),

where |∆̂| is the meshsize of ∆̂.

Proof. Fix any τ ∈ ∆̂ and any x ∈ τ . Let f ∈ C5(∆̂) and consider a polynomial
p ∈ π4 that interpolates f at point x, namely,

(13) p(x) = f(x),

and

(14) |f(y)− p(y)| ≤ C‖f (5)‖ |∆̂|5, y ∈ Ω(τ),

where C is an absolute constant. By appying (13), Lemma 3, and (14) consecutively,
it follows that

|f(x)− Tf(x)| = |T (f − p)(x)| ≤ Ca‖(f − p)|Ω(τ)‖ ≤ Ca‖f (5)‖ |∆̂|5.
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Since this inequality holds for any x ∈ ∆̂, we have

‖Tf − f‖ ≤ Ca‖f (5)‖ |∆̂|5.

This completes the proof of the theorem. �
If the original triangulation ∆ satisfies the condition that for each vertex v ∈ V ,

deg(v) is an odd number, or v is a singular vertex, then we see from the LCTR

Algorithm that ∆̂ = ∆. Also, we have ∆̂ = ∆ for the four-direction mesh ∆(2). In
both cases, we can choose the minimally determining set P to contain midpoints
of all the edges in E.

Corollary 1. (a) If a triangulation ∆ contains only odd-degree interior vertices
or singular vertices, then there is a Hermite interpolation scheme to achieve the
optimal approximation order of the space S1

4(∆).
(b) If ∆ is a four-direction mesh ∆(2), then the space S1

4(∆(2)) has fifth order
of approximation, and there is a Hermite interpolation scheme that achieves this
optimal approximation order.
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