


SWAPPING EDGES OF ARBITRARY TRIANGULATIONS
TO ACHIEVE THE OPTIMAL ORDER OF APPROXIMATION∗

CHARLES K. CHUI† AND DONG HONG‡

SIAM J. NUMER. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 34, No. 4, pp. 1472–1482, August 1997 009

Abstract. In the representation of scattered data by smooth pp (:= piecewise polynomial)
functions, perhaps the most important problem is to find an optimal triangulation of the given sample
sites (called vertices). Of course, the notion of optimality depends on the desirable properties in the
approximation or modeling problems. In this paper, we are concerned with optimal approximation
order with respect to the given order r of smoothness and degree k of the polynomial pieces of the
smooth pp functions. We will only consider C1 pp approximation with r = 1 and k = 4. The main
result in this paper is an efficient method for triangulating any finitely many arbitrarily scattered
sample sites, such that these sample sites are the only vertices of the triangulation, and that for
any discrete data given at these sample sites, there is a C1 piecewise quartic polynomial on this
triangulation that interpolates the given data with the fifth order of approximation.
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1. Introduction. Among the many methods for scattered data interpolation
(approximation) on a polygonal domain Ω (see [5]), a class of methods is based on
triangulating Ω with the sample sites as the only vertices of the triangulation. A
collection ∆ = {τi}N

i=1 of triangles τi in R2 is called a triangulation of a finite set V
of sample sites vi, if (i) the vertices of the triangles are precisely the sample sites vi,
(ii) the union Ω :=

⋃N
i=1 τi is a connected set, and (iii) the intersection of any two

adjacent triangles in ∆ is either a common vertex or a common edge. We will call V
the vertex set of the triangulation ∆. In the study of pp (:= piecewise polynomial)
functions on a triangulation ∆, the notation Sr

k(∆) is used to denote the subspace of
Cr(Ω) of all pp functions with total degree ≤ k and with grid lines given by the edges
of ∆.

In general, a vertex set V has many different triangulations. One of the most
important problems in the representation of scattered data defined on V by Cr pp
functions is to find an “optimal triangulation” of V , and by this we mean that (i) the
set V of sample sites is the same as the set of vertices of the triangulation, and (ii)
the space of pp functions with degree k and smoothness order r on this triangulation
achieves the highest order of approximation. This order, of course, cannot exceed
k + 1. We only study C1 piecewise quartic polynomial approximation, with r = 1
and k = 4. For any finitely many arbitrarily scattered sample sites in R2, we have
an efficient algorithm for constructing a triangulation with these sample sites as the
only vertices such that a C1 piecewise quartic polynomial interpolation scheme on this
triangulation can be formulated to interpolate any given data on these sample sites
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FIG. 1. Triangulations ∆(1) and ∆̂ of a finite rectangular set of uniformly spaced lattice points.

with the highest (or fifth) order of approximation. To demonstrate the nontriviality
of this problem, let us consider a finite rectangular block of uniformly spaced lattice
points. It is well known that with the three-directional mesh ∆(1) (as shown in
Fig. 1 (a)), the spline space S1

4(∆(1)) only admits the fourth order of approximation
(cf. [2]), while we will show in this paper that the new triangulation ∆̂ (as shown
in Fig. 1 (b)), obtained by applying our algorithm, guarantees the fifth order of
approximation from S1

4(∆̂).
This paper is organized as follows. In the next section, we give a brief review of the

B-net representation of pp functions and introduce the notion of type-O triangulations,
where “O” stands for optimal order of approximation. In section 3, we construct a
locally supported basis for the space S1

4(∆) over any type-O triangulation ∆. In
section 4, we give an interpolation scheme from the space S1

4(∆) over any type-O
triangulation ∆ that provides the optimal (or fifth) order of approximation. Based
on edge-swapping, an efficient algorithm for constructing a type-O triangulation ∆ of
an arbitrary finite vertex set, so that the fifth order of approximation from S1

4(∆) is
achieved, will be discussed in the final section of this paper.

2. Preliminaries and statement of main results. The B-net representations
of pp functions will play an important role in our discussion. For completeness, we
give a very brief review of such representations. More details can be found in the
spline literature, such as [3].

Recall that to any positive integer k, a Bernstein–Bèzier polynomial basis of
degree k is given by

Bα,τ (x) =
( |α|

α

)
ξα, α = (αu, αv, αw) ∈ Z3

+, |α| := αu + αv + αw = k,

where ξ = (ξu, ξv, ξw) is the barycentric coordinate of x with respect to a given triangle
τ = [u, v, w] and

ξα = ξαu
u ξαv

v ξαw
w and

( |α|
α

)
=

|α|!
α0!α1!α2!

.
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The points

xα,τ =
1
k

(α0u + α1v + α2w), |α| = k,

are usually called domain points of the triangle τ , and the set of all domain points on
∆ will be denoted by X. For each function s ∈ S0

k(∆), write

s(x) =
∑

|α|=k

bα,τBα,τ (x), α ∈ Z3
+ , x ∈ τ ∈ ∆.

Then the map

bs ∈ RX : xα,τ 7→ bα,τ , α ∈ Z3
+, |α| = k, τ ∈ ∆ ,

is called the B-net representation of s. We have the following estimates (cf. [4]).
LEMMA 1. The B-net representation bs ∈ RX of any s ∈ S0

k(∆) satisfies

||s||∞ ≤ ||bs||∞ ≤ Ck||s||∞ .

Now, let τ = [u, v, w] and τ̃ = [u, v, w̃] be two triangles in ∆ with common edge
e = [u, v]. Also let e1, e2, and e3 denote the unit coordinate vectors in R3. Then it is
well known that the C1 smoothness conditions across the edge e for any s ∈ S1

4(∆),
with B-net coordinates bα,τ , is determined by the relation

bα+e3,τ̃ = c1bα+e1,τ + c2bα+e2,τ + c3bα+e3,τ ,(1)

where α = (αu, αv, 0) ∈ Z3
+ with αu + αv = 3, and ci, i = 1, 2, 3, are the barycentric

coordinates of w̃ with respect to τ ; i.e.,

c1 =
area[w̃, v, w]
area[u, v, w]

, c2 =
area[u, w̃, w]
area[u, v, w]

, c3 =
area[u, v, w̃]
area[u, v, w]

.(2)

In what follows, we denote by VI , for a given triangulation ∆ with vertex set V ,
the set of all interior vertices in ∆, and call Vb := V \ VI the set of all boundary
vertices in ∆. We also denote the collection of all edges in ∆ by E and the collection
of all interior edges in ∆ by EI .

Recall that the degree of any vertex v ∈ V , which we will denote by deg(v), is
the number of edges emanating from v. If deg(v) is an even integer, then we say that
v is an even-degree vertex; otherwise, v is called an odd-degree vertex. In addition,
an interior vertex v is called a singular vertex if (i) its degree is 4 and (ii) it is the
intersection of two straight line segments. If ej−1, ej , ej+1 are three consecutive edges
with a common vertex v, then the edge ej is called degenerate with respect to v,
provided that the two edges ej−1 and ej+1 are colinear.

To introduce the notion of a type-O triangulation, we need to classify its vertices.
A vertex u will be called a type-O vertex of a triangulation ∆, if u satisfies at least
one of the following.

(a) u is a boundary vertex of ∆.
(b) u ∈ VI with deg(u) = 4.
(c) u ∈ VI and deg(u) is an odd integer.
(d) u ∈ VI and there exists a vertex v of ∆ that satisfies either (i) v ∈ VI

and deg(v) = 4 or deg(v) = an odd integer, or (ii) v ∈ Vb, such that [u, v] is a
nondegenerate edge of ∆ with respect to u.
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DEFINITION. A triangulation of V with only type-O vertices is called a type-O
triangulation.

The reason for introducing the notion of type-O triangulations is the following.
THEOREM 1. Any type-O triangulation ∆ admits the fifth order of approximation

from the space S1
4(∆).

This theorem is a consequence of Theorem 4, to be established in section 4.
The second main result of this paper is that any arbitrary finite vertex set, with

the exception of a one-dimensional set (i.e., those whose vertices lie on a straight
line), admits a type-O triangulation. In fact, in section 5, we will give an algorithm
for changing any triangulation to a type-O triangulation simply by edge-swapping, so
that no new vertices are introduced.

3. A local basis over any type-O triangulation. A subset P of domain
points will be called a determining set of the space Sr

k(∆), if the zero function is the
only function in Sr

k(∆) whose B-net representation vanishes on P. Such a determining
set P is called a minimal determining set if there is no determining set with fewer
elements. Clearly, P is a determining set for Sr

k(∆) if and only if the linear map
s 7→ bs|P , defined on Sr

k(∆), is one-one; also, P is a minimal determining set for
Sr

k(∆) if and only if this one-one linear map is also onto. To construct a local basis of
the space S1

4(∆) for a type-O triangulation ∆, we choose a minimal determining set
P for S1

4(∆) so that the B-net coordinates b(x), x ∈ X \ P, are dependent only upon
a very small subset of the B-net coordinates close to the x. This has some important
practical advantages. For example, a local perturbation of a data set will only alter
the interpolant locally, and a locally supported basis derived from such a determining
set will ensure that the space S1

4(∆) has the fifth order of approximation.
A minimal determining set P that ensures these properties for a type-O triangu-

lation ∆ is constructed as follows.
Step 1. To any even-degree interior vertex u ∈ VI with deg(u) ≥ 6, there is a

nondegenerate edge [u, v] with respect to u, such that v satisfies (a), (b), or (c). We
put a check-mark on such an edge [u, v] (the mark is shown as a diamond in the
example in Fig. 2), and assign the midpoints of all unmarked edges to P.

Step 2. Every vertex u of the triangulation ∆ will be assigned a certain triangle
τu, among all the triangles with u as the common vertex. If u has deg(u) = 4 but
is nonsingular, we label its four neighbor vertices u1, . . . , u4 in the counterclockwise
direction in such a way that both sets {u, u1, u3} and {u2, u3, u4} are noncolinear,
and choose τu = [u, u1, u2]. Otherwise, any triangle attached to u may be assigned to
u. Note that τu, which has been assigned to u, may be assigned to another neighbor
vertex again.

Step 3. If u has deg(u) = 4 but is nonsingular with τu = [u, v, w], say, then we
add the points u and (3u + v)/4 to P. For any other vertex u with τu = [u, v, w], we
add the points (3u + v)/4 and (3u + w)/4 as well as u itself to P.

Step 4. To any vertex u which is not an interior vertex with odd degree, we add
the point (2u+ v +w)/4 to P, where again τu = [u, v, w] is the triangle assigned to u.

In addition to the set P as constructed above, we need the following notation.
Let u be any vertex and τ = [u, v, w] be any triangle with u as one of its vertices.

We consider the set

Xn
u,τ = {xα,τ : αu = k − n}

of domain points on τ ∈ ∆ associated with u, and call the sets
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FIG. 2. Elements (?) in the determining set.

Rn
u =

⋃
τ3u

Xn
u,τ = {xα,τ : τ ∈ ∆, αu = k − n}

and

Dn
u =

n⋃
j=0

Rj
u = {xα,τ : αu ≥ k − n, τ ∈ ∆}

the nth ring and nth disk around u, respectively (cf. [1]).
The following result implies that P is a minimal determining set for the space

S1
4(∆).

THEOREM 2. For each b : P 7→ R, there exists a unique g ∈ S1
4(∆) such that the

B-net representation bg of g satisfies

bg|P = b and ‖bg‖∞ ≤ ‖b‖∞ ,

where C is a positive constant independent of b and the mesh size |∆| := supτ∈∆ diam τ.
Proof. We first prove that P is a determining set. Let us arrange the vertices in

an appropriate order and extend b to the B-net coordinates bg of g as follows.
(i) If u is an even-degree interior vertex with deg(u) ≥ 6, then according to

Lemma 6 in [1], we can determine the bg values on all of the domain points in D2
u by

using the given values on P.
(ii) Any of the remaining vertices must be a boundary vertex, an odd-degree

vertex, or an interior vertex with deg(u) = 4.
From (i) and the choice of the set P, we see that the midpoints of all the edges are

uniquely determined. Therefore, by Lemmas 2–5 in [1], it is clear that the bg values
can be uniquely determined on all the domain points in D2

u.
Next, it is easy to see that there are (3 + deg(u)) points in P ∩ D2

u for any
nonsingular interior vertex u, and (4 + deg(v)) points in P ∩ D2

v for any singular or
boundary vertex v. Therefore, we have

|P| = 3|VI | + 4|Vb| + |E| + σ,
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where, as usual, |A| denotes the cardinality of a set A. Furthermore, it follows from
[9] that

dimS1
4(∆) ≥ 3|VI | + 4|Vb| + |E| + σ = |P| .

Hence P must also be a minimal determining set for S1
4(∆), and consequently, the

dimension of the space S1
4(∆) over a type-O triangulation ∆ is given by

dimS1
4(∆) = 3|VI | + 4|Vb| + |E| + σ = |P| ,

so that the extension bg of b is also unique.
Furthermore, we see that bg satisfies the C1 smoothness conditions on D2

u. For
the vertices discussed in (i), note that bg|D2

u\P can be determined by using the explicit
smoothness conditions in (1). It follows from (2) that the coefficients ci are bounded
by a constant independent of b and |∆|. This is also valid for any vertex with the
exception of the nonsingular ones with degree 4. If u is a nonsingular vertex with
deg(u) = 4, then by Lemma 5 in [1], the determinant of the coefficient matrix for
solving bg|D2

u\P is a nonzero according to our choice of P, and it is also independent
of b and |∆|. This completes the proof of the theorem.

Let

d := |P| = dimS1
4(∆)

and write

P = {x1, . . . , xd} ⊂ X .

Also, let {b1, . . . , bd} ⊂ RX be the “dual” of P, defined as follows: (i) bi(xj) =
δij , i, j = 1, . . . , d, and (ii) for each x ∈ X \ P, bi(x) is uniquely determined by
the smoothness condition (1) by following the procedure as described in the proof of
Theorem 2. Let us now consider the function si ∈ S1

4(∆) with B-net representation
bi, i = 1, . . . , d. Then it is clear that {s1, . . . , sd} is a basis of S1

4(∆). We will show
that this basis is local.

For this purpose, let us first recall the notion of a closed star St(u) with vertex
u [7, p. 135] in a triangulation ∆ defined as the union of all the triangles in ∆ with
u as the common vertex. More precisely, let us call St(u) a 1-star of u and denote
it by St

1
(u). For m ≥ 1, the m-star St

m
(u) of u can be defined inductively as the

union of all the triangles in ∆ which have at least one common vertex with a certain
(m−1)-star St

m−1
(u). Analogous to the definition of vertex splines, a spline is called

an m-star spline if its support is no larger than St
m

(u) for some vertex u ∈ ∆. Hence,
a 1-star spline is a vertex spline. We have the following result.

THEOREM 3. For a type-O triangulation ∆, the basis {si}d
i=1 of S1

4(∆) defined
above is a locally supported basis with

supp(si) ⊂ St
3
(vi)

for some vertices vi ∈ V, i = 1, · · · , d.
Proof. Following the procedure as described in the proof of Theorem 2, the bi

values of si on D2
u for even-degree interior vertices u with deg(u) ≥ 6 are determined

prior to the bi values on D2
v for any other vertex v. We divide our discussion into

three cases.
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(i) For xi ∈ P∩D1
u, since bi = 0 outside of St(u), it is clear that supp(si) ⊂ St(u).

Now we may assume that xi ∈ P ∩ R2
u.

(ii) Suppose that xi ∈ D2
u and u is one of the odd-degree vertices, boundary

vertices, or even-degree interior vertices with deg(u) = 4. If xi is not the midpoint of
an edge, then supp(si) ⊂ St(u). On the other hand, for a midpoint of some edge [u, v],
if v is an even-degree interior vertex with deg(v) ≥ 6, and the edge [v, w], with some
vertex w 6= u, is check-marked as in Step 1 in the choice of P for vertex v (instead of
u), then

supp(si) ⊂ St(u)
⋃

St(v)
⋃

St(w) ⊂ St
2
(v) .

Otherwise,

supp(si) ⊂ St(u)
⋃

St(v) ⊂ St
2
(u) .

(iii) Finally, if u does not satisfy (ii), then u is an even-degree interior vertex with
deg(u) ≥ 6. If xi is not a midpoint of an edge, then supp(si) ⊂ St(u). On the other
hand, for a midpoint xi of some edge [u, u′], suppose that u′ is not an even-degree
interior vertex with deg(u′) ≥ 6. Then there is an edge [u, v] which is check-marked
in Step 1 in the choice of P for the vertex u. Hence,

supp(si) ⊂ St(u)
⋃

St(v)
⋃

St(u′) ⊂ St
2
(u) .

Otherwise, by the choice of the determining set in P, there are edges [u, v] and [u′, v′],
check-marked as in Step 1 for the vertices u and u′, respectively, such that v and v′

are among the type-O vertices that satisfy (a), (b), or (c), and

supp(si) ⊂ St(u)
⋃

St(u′)
⋃

St(v)
⋃

St(v′) ⊂ St
3
(u) .

In summary, for any xi ∈ P, the corresponding basis function si ∈ S1
4(∆) has

support supp(si) ⊂ St
3
(ui) for some vertex ui ∈ V . This completes the proof of the

theorem.

4. An interpolation scheme and its approximation power. Since the min-
imal determining set P contains the vertex set V , any discrete data set with V as the
set of sample sites admits an interpolant from S1

4(∆). In this section, we construct an
explicit interpolation scheme for S1

4(∆), where ∆ is a type-O triangulation, and apply
this scheme to prove that the space S1

4(∆) achieves the fifth order of approximation.
Let (u, zu), u ∈ V , be any discrete data set. For convenience, let us assume that

this data set is derived from some continuous function f on Ω =
⋃

τ∈∆ τ , i.e.,

f(u) = zu , u ∈ V .

We will first construct a pp function g ∈ S0
4(∆) such that

g(u) = f(u) , u ∈ V .

In the course of our construction, we will show that our g is actually in C1, so that
g ∈ S1

4(∆) and is uniquely determined. Since our method is linear, this procedure
induces a linear operator T from C(Ω) to S1

4(∆) defined by

T : f 7→ g , f ∈ C(Ω) .(3)
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Interpolation scheme.
Step 1. Let s be the pp function in S0

4(∆) which interpolates f at all the domain
points on ∆. Then it is clear that

s(u) = f(u) , u ∈ V .

Furthermore, let us consider the B-net representation

s =
∑

|α|=k

bs(xα,τ )Bα,τ

of s, and set

bg(x) = bs(x) , x ∈ P .

Step 2. Determine the remaining bg values on X \ P by using the smoothness
conditions in (1) in the order as described in the proof of Theorem 2. Let g be the pp
function with B-net representation bg. Then g ∈ S1

4(∆).
For a triangle τ ∈ ∆ with vertices u, v, and w, we consider the neighborhood

Ω(τ) = St
2
(u)

⋃
St

2
(v)

⋃
St

2
(w)(4)

of τ . Then we have the following.
LEMMA 2. The linear operator T defined in (3) satisfies
(i) Tp = p for any polynomial p ∈ π4;
(ii) ||Tf |τ‖∞ ≤ C‖f |Ω(τ)‖∞, where C is a positive constant independent of f .
Proof. The first part of the lemma is obvious from the definition of the operator

T . That the supports of the basis functions si of S1
4(∆) satisfy

supp(si) ⊂ Ω(τ), for some τ ∈ ∆ ,

follows from the proof of Theorem 3. Let g(x) = (Tf)(x) :=
∑

i cisi(x), x ∈ τ , τ ∈ ∆.
According to Theorem 3, we have si(x) 6= 0 only if the corresponding domain point
xi lies in Ω(τ). Therefore, the number of nonzero values of the ci’s is bounded from
above by some positive constant C. Moreover, ‖bsi

‖ ≤ C maxx∈P∩Ω(τ) |bsi(x)| = C.
Hence, by Lemma 1 and the definition of si, we have ‖si‖ ≤ ‖bsi

‖ ≤ C and maxi |ci| ≤
‖bg‖∞ = maxxi∈Ω(τ)∩P |bg|. It follows that

|Tf(x)| ≤ C max
x∈Ω(τ)∩P

|bg(x)| ≤ C‖f |Ω(τ)‖∞ , x ∈ τ ∈ ∆ .

This completes the proof of the lemma.
We are now in a position to prove the following result.
THEOREM 4. Let ∆ be a type-O triangulation. Then the linear (approximation)

operator T defined in (3) has the fifth order of approximation; i.e.,

‖Tf − f‖ ≤ C‖f (5)‖ |∆|5 , f ∈ C5(∆) .

Consequently,

dist∞(f, S1
4(∆)) ≤ C‖f (5)‖ |∆|5 , f ∈ C5(∆) ,

where C is a positive constant independent of f and |∆|.
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Proof. Fix any τ ∈ ∆ and x ∈ τ . Let f ∈ C5(Ω). Then there is a polynomial
p ∈ π4 that interpolates f at point x, i.e.,

p(x) = f(x) ,(5)

and satisfies

|f(y) − p(y)| ≤ C‖f (5)‖ |∆|5(6)

for any y ∈ Ω(τ) as defined by (4), where C is an absolute constant. By applying (5),
Lemma 2, and (6) consecutively, it follows that

|f(x) − (Tf)(x)| = |T (f − p)(x)| ≤ C‖(f − p)|Ω(τ)‖ ≤ C‖f (5)‖ |∆|5 .

Since this inequality holds for any x ∈ ∆, we have

‖Tf − f‖ ≤ C‖f (5)‖ |∆|5 .

This completes the proof of the theorem.
It is easy to see that any odd-degree triangulation and the four-direction mesh

are type-O triangulations. Therefore, we have the following.
COROLLARY 1. (a) If a triangulation ∆ consists only of odd-degree interior ver-

tices, then there is an interpolation scheme from S1
4(∆) that yields the fifth order of

approximation.
(b) For the four-direction mesh ∆(2), the space S1

4(∆(2)) has the fifth order of
approximation, and an interpolation scheme can be used to achieve this optimal ap-
proximation order.

5. Construction of type-O triangulations. The main result of this paper
will be established in this section, namely: to an arbitrary finite set V of sample
sites, there is an optimal triangulation ∆̂, with the sample sites as its only vertices.
Optimality means that S1

4(∆̂) has the fifth order of approximation. Our main idea is
first to start with any triangulation ∆ with the given points in V as its only vertices,
and then change ∆ to a type-O triangulation ∆̂ by an edge-swapping process.

Every interior edge e of a triangulation ∆ is the diagonal of a quadrilateral Qe,
which is the union of two triangles of ∆ with common edge e. Following [8], we say
that e is a swappable edge if Qe is convex and no three of its vertices are colinear. If
an edge e of a triangulation ∆ is swappable, then we can create a new triangulation
by swapping the edge. That is, if v1, . . . , v4 are the vertices of Qe ordered in the
counterclockwise direction, and if e has endpoints v1 and v3, then the swapped edge
has endpoints v2 and v4. Two vertices in ∆ will be called neighbors of each other if
they are the endpoints of the same edge in ∆. Hence, while v1 and v3 are neighbors
in the original triangulation ∆, v2 and v4 become neighbors in the new triangulation
after the edge e is swapped.

For any given set of sample sites, it is clear that with the exception of those that
are colinear, there is a triangulation with these sample sites as its only vertices. Let
∆ be a triangulation associated with the given set V , and let VO be the set of all
type-O vertices in ∆. Set

Ṽ = V \ VO .

If u ∈ Ṽ , then u and all its neighbors with nondegenerate edges with respect to u
must be even-degree vertices with deg(u) ≥ 6. We claim that, for every interior vertex
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u with n := deg(u) ≥ 5, there is a swappable edge e ∈ Eu, where Eu denotes the set
of all edges with common vertex u ∈ V . Indeed, if the neighbors ui, i = 1, . . . , n, of
u are ordered in the counterclockwise direction, then

St
1
(u) =

n⋃
i=1

[ui, u, ui+1] ,

where un+1 := u1, and by setting αi = ∠ui−1uiui+1, we have
n∑

i=1

αi = (n − 2)π .

Therefore, at least three of the αi’s are smaller than π. Let θi := ∠uiuui+1, i =
1, . . . , n. Then, since n ≥ 5, at most two of the values θi + θi+1, i = 1, . . . , n − 1,
are greater than or equal to π. Hence, there is at least one vertex ui such that
both ∠ui−1uui+1 and ∠ui−1uiui+1 are less than π. Therefore, the quadrilateral Q :=
[ui−1, ui, ui+1, u] is convex, and hence, the edge [v, vi] is swappable.

Now we are ready to describe our Swapping Algorithm for constructing a type-O
triangulation ∆̂, starting with any triangulation ∆.

Swapping Algorithm.

Do while (Ṽ 6= ∅)
Pick any vertex u in Ṽ and consider its neighbors.
Pick any neighbor v of u so that the edge [u, v] is swappable.
Swap [u, v], yielding a new edge [u′, v′].
Form a subset of Ṽ by deleting from Ṽ all the neighbors w of
w′ := u, v, u′, or v′, with [w, w′] being a nondegenerate edge
with respect to w.
Call this subset Ṽ .
Enddo

The new triangulation obtained by applying this Swapping Algorithm is denoted
by ∆̂. Let V̂ := V . We use V̂I and V̂b to denote the sets of interior and boundary
vertices of ∆̂, respectively, and define Ê, ÊI , and Êb in a similar way.

In the following, we give a rough estimate of the number of swapping steps re-
quired to obtain ∆̂ from a given ∆. In the Swapping Algorithm, we only swap the
edge with at least one even-degree interior vertex u with deg(u) ≥ 6, and once an
edge has been swapped, there are at least two even-degree interior vertices u with
deg(u) ≥ 6 that are changed to odd-degree vertices. Thus, every time we swap an
edge, at least two even-degree interior vertices with deg(u) ≥ 6 do not have to be
considered at the later stages of the Swapping Algorithm. Therefore, the number of
steps required to perform an edge-swapping in the Swapping Algorithm is bounded
from above by bL/2c, where L is the number of even-degree interior vertices with
deg(u) ≥ 6 in ∆.

It is clear that the triangulations ∆ and ∆̂ have the same number of triangles,
singular vertices, interior and boundary vertices, and edges. Hence, it follows that

dim S1
4(∆̂) = dim S1

4(∆) .

Furthermore, it is clear that ∆̂ is a type-O triangulation (since Ṽ = ∅). Therefore, as
a consequence of Theorem 4 in section 4, we have the following.
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THEOREM 5. Every finite set V of sample sites admits a triangulation ∆̂, such
that S1

4(∆̂) has the fifth order of approximation.
We call ∆̂ an optimal triangulation of the finite set V . In comparison with the

refinement algorithms, our method has some advantages. First, instead of working on
a given triangulation, as is usually done, we construct a triangulation with the sample
sites as the only vertices and achieve the optimal order of approximation. This allows
us to avoid subdividing the triangles to introduce new vertices (where data values are
not available). Second, our Swapping Algorithm is efficient and does not change the
dimension of the spline space over the original triangulation.
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