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STABILITY OF OPTIMAL-ORDER APPROXIMATION 

BY BIVARIATE SPLINES OVER ARBITRARY TRIANGULATIONS 


C. K. CHUI, D. HONG, AND R. Q. JIA 

ABSTRACT.Let A be a triangulation of some polygonal domain in x2 and 
S i ( A ), the space of all bivariate Cr piecewise polynomials of total degree 
5 k on A .  In this paper, we construct a local basis of some subspace of the 
space S i ( A ),where k 2 3r + 2 ,  that can be used to provide the highest order 
of approximation, with the property that the approximation constant of this 
order is independent of the geometry of A with the exception of the smallest 
angle in the partition. This result is obtained by means of a careful choice of 
locally supported basis functions which, however, require a very technical proof 
to justify their stability in optimal-order approximation. A new formulation 
of smoothness conditions for piecewise polynomials in terms of their B-net 
representations is derived for this purpose. 

The objective of this paper is to describe the approximation properties of 
certain bivariate spline spaces over arbitrary triangulations of a polygonal do- 
main in I W ~and to construct the approximants that achieve the highest order 
of approximation. Let A be a 2-dimensional simplicia1 complex [9 ,  p. 1311. 
We assume throughout that A is pure; that is, each maximal simplex has di- 
mension 2. Then A is called a triangulation of a polygonal region in I W ~ .As 
usual, for any nonnegative integers k and r , S[(A) denotes the space of all Cr 
functions which are piecewise polynomials of total degree at most k separated 
by A. The approximation order of the space S; (A) is defined to be the largest 
integer p for which 

holds for all sufficiently smooth functions f,where the smallest constant C ,  
called the approximation constant (of optimal-order), depends only on f and 
the smallest angle in A. Also 1A1 := sup,,, diam .s denotes the mesh size 
of A, and the distance is measured in the supremum norm 1 1  1 1 .  It is clear 
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that the approximation order of SL(A) cannot be higher than k + 1, regardless 
of r , and is trivially k + 1 in case r = 0 .  On the other hand, it is also 
well known that for r 2 1 the approximation order from S[(A) not only 
depends on k and r , but also on the geometric structure of the partition A. 
According to the well-known results in finite element theory (cf. [ l  l]),  the 
full approximation order of k + 1 is obtained provided that k 2 4r + 1 . 
Extension of this property of optimal approximation to k 2 3r + 2 is more 
recent. An abstract proof based on the Hahn-Banach theorem was given by 
de Boor and Hollig [2]. However, as was already pointed out by de Boor [ l ]  
(see also Schumaker 110, p. 547]), the proof given in [2] does not fully support 
the claim that the approximation constant in (1) depends only on the smallest 
angle in the triangulation. Although constructive proofs were also given in [5] 
and 161, yet the behavior of the approximation constants still depends on the 
measurement of "near-singularity" of A; i.e., the constant becomes large for 
near-singular vertices. Observe that when A is refined so that 1A1 + 0 in 
( I ) ,  the standard refinement algorithms are mainly concerned with the smallest 
angle in the partitions, but not with the "near-singularity" of such refinement. 
Therefore, it is important to give an approximation scheme in order to show 
that the spline space SL(A) , k 2 3r + 2 ,  admits optimal approximation order 
of k + 1 in such a way that the approximation constant C in (1) does not 
depend on the geometry (such as near-singularity), with the exception of the 
smallest angle in A. 

The main purpose of this paper is to construct a stable local basis of the super 
spline subspace S;"(A) of SL(A) ,where k 2 3r +2 and p = (see [4, p. 
731 and [lo]), and to show that the full order of approximation can be achieved 
via a quasi-interpolation scheme using this basis, and that the approximation 
constant C in (1) of this optimal order depends only on the smallest angle 
in the triangulation A. Unlike the techniques introduced in [2] (see also [I]), 
which are based on determining the smoothness conditions in terms of the 
domain points on two triangles that share a common edge to "disentangle the 
rings" of smoothness conditions, our approach is to inductively determine the 
smoothness conditions on the rings of the domain points of all vertices; that 
is, we determine the smoothness conditions in terms of the points on all of the 
triangles attached to a common vertex. 

This paper is organized as follows. In Section 2, in order to facilitate our 
procedure of constructing a stable super spline basis, we give a new formulation 
of the smoothness conditions in terms of the B-net representations. In Sec- 
tion 3, we demonstrate how to choose a minimum determining set and provide 
an explicit scheme of approximation from SL'p(A) that attains the optimal ap- 
proximation order. Finally, in Section 4, we will give an explicit scheme for 
constructing some stable local basis of Sl 'p(A) . 

Throughout this paper, we will always assume, without loss of generality, that 
A is connected. For a vertex v of A, we denote by s ( v )  the closed star of 
vertex v in A [9, p. 1351; i.e., the cell formed by all the triangles in A with v 
as a common vertex. If %(v)\{v) is connected for every vertex v of A, then 
A is called strongly connected. If A is strongly connected, then each boundary 
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vertex has exactly two boundary edges attached to it. For simplicity, we will 
always assume that A is strongly connected, though our discussion is also valid 
otherwise. 

Let z = [u ,  ,u ,  w] be a triangle with vertices u , v and w . For any x E R2,  
denote by <(x)  = (5, , <,, t w )  the barycentric coordinates of x with respect to 
z ; that is, 

x = t , u + t v v + t w w ,  t u + t v + t w  = 1. 

For a = (a, ,  a, , a,,) E Z: , the Bernstein-Bezier polynomial B,, , is defined 
by 

where la1 = a, + a, + a, and = . Moreover, we define the points 
x,. ,on z to be (auu  + a,v + aww)/ la l .  It is well-known that any p E nk ,the 
space of all polynomials of total degree 5 k , can be written in a unique way as 

This gives rise to a mapping b: x,, ,+-+ b,, ,, Ial = k , and this mapping is 
called the B-net representation of p with respect to z . 

Let X be the collection {x, ,,: z E A, la1 = k)  . To any f E S!(A) there 
corresponds a unique mapping bf from X to R such that on each z E A ,  

This bf is called the B-net representation of f with respect to A. 
In our investigation, it is essential to represent Cr-smoothness conditions 

of spline functions in terms of B-net representations. Suppose that a spline 
function f is defined over two triangles, say z = [u , v , w] and t = [u , v , w] , 
with a common edge [u, v] . Let S, S, ,S, and S, denote the oriented areas 
of the triangles z ,  [w , v ,  w] ,  [u,  w ,  w] ,  and t ,  respectively. For instance, 
if u is the origin of IR2, v = (vl , vZ), w = (w1, w2) and w = (w, , wz), 
then 

and 

The following lemma describes Cr-smoothness conditions on a spline function 
f in terms of its B-net representation (cf. 181). 

Lemma 1. Suppose that a function f is de$ned on z u t by 
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Then f E Cr(z  u i) if and only if for all nonnegative integers e < r and 
jl = (y,, jl,, 0) E Z: with 171 = k - e ,  

where p = (P,, P,, P,) E Z: and e3 = (0 ,  0 ,  1 ) .  

We remark that the quantities % ,  9,and % are all bounded by some 
constant which depends only on the smallest angle in the partition A .  Hence, 
as we will see, the approximation constant for optimal-order approximation has 
to depend on this smallest angle. 

For later reference, we need another form of the smoothness conditions 
which plays an important role to prove the stability of the local basis. For 

3a = ( a , ,  a , ,  a,) E Z+ with la1 = k , let 

Then we have the following result. 

Lemma 2. A function s E S ~ ( Tu i) is in Cr if and only if the corresponding 
terms {C, , ,) and {C, ,?) satisfy the conditions : 

for 1 <a, < r where a = (a, ,  a , ,  a,) E Z: with la1 = k .  

Proof. Without loss of generality, we may assume that u is the origin of LR2. 
Let z = [ u ,  v , w], i = [u , v , w], and consider an s E S i ( z  U i )  which agrees 
with some p E n k  on z and p E n k  on 2 .  For 0 5 m 5 k , let p, and p, be 
the homogeneous components of degree m of p and p , respectively. Also, let 
s, be the corresponding piecewise polynomial function which agrees with p, 
on z and p, on i .  Clearly, s, E S;(Tu i), m = 0 ,  1 ,  . . . , k .  Moreover, 
since we may assume that the mesh line [u , v ]  is on the x-axis, it is not difficult 
to see that s is in Cr  if and only if each s, is in Cr  , m = 0 ,  1 , . . . , k . Note 
that 

where (1 - l,:- l, , tu, 5,) is the barycentric coordinate of x with respect to 
the triangle z = [u ,  v , w]. By the multinomial theorem, we have 

--
(k - v?,- v,)! (- 1)&+"<$<%.

(k-vv-v,-6v-6w)!6,!6,!
6, +a,, < k - 4  - l / , (  

Therefore, by setting 6,. + v,, and 6, + v, to be a,, and a, , respectively, we 
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have 

Recall that u = (0 ,  0) . So, writing v = (vl,v2),  w = (wl ,w2), and x = 
(xl, XZ),we see that 

and 

are homogeneous linear functions of x ;hence, we have 

Taking (5) into account, we deduce that 

Similarly, we have 

k ! c ,-y^arlt2,= x ( k  - m)!oL,!uc! a s v  
a, fa,,, =m 

where ( 1  - l ,  -ti,,tL,, fC , )  is the barycentric coordinate of x with respect to 
[u,v ,  GI .  

Let us now express 5, and 5, in terms of and PC,.  Suppose t i 1  = 
(GI,w2). Then we have 

- - x,G2- x2G1 " v1x2 - v2x1;s
5 L I  - vlu)2- v2w1, C'" = vlG2- u2Gl .  

These two equalities together with (2) and (3)  yield 

and 
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Finally, replacing <, by (,+ %& and <,
 by %(d in (7), we obtain 

a, k! a,!
-- C (k- m)!a,!a,! (!(a,. - I)! c a , 7  

a,+a,=m e=o 

Let PC = a, + a, - I , p, = .t and q = a, - I . Then we have a, = pa - q , 
and 

Comparing this with the expression for p,(x) in (8), we conclude that s, E Cr  
if and only if 

for P = (Pu, Pv , Pa)E Z: with 1 < Pa 5 r and P,+Pd = m . This completes 
the proof of the lemma. 

To investigate the approximation properties of bivariate s p l i ~ e  spaces, it is 
convenient to introduce the notion of super splines. Given a triangulation A 
and nonnegative integers k , r and y with k 2 y 2 r , a super spline is a 
piecewise polynomial of degree at most k on A which is Cr  across each edge 
and C b r o u n d  each vertex. Let SL'p(A)be the space of all such splines. 
Then SL'p(A)is a subspace of SL(A).In this section, we describe an explicit 
quasi-interpolation scheme and prove that the super spline space S;'p(Aj,y =Lv],. k 2 31 + 2 ,  admits the optimal approximation order of k + 1 with the 
approximation constant dependent only on the smallest angle in the partition 
A. 


Let us introduce a natural pairing 

on ElX . Now choose and fix an orientation for each interior edge of A. Let e = 
[u, v]  be an oriented interior edge with two triangles [u, v , w ]  and [u, v , w] 
attached to it. If the orientation of e is from u to v , then we assume that 
the points u ,v and w are ordered in the counterclockwise direction. In this 
case, we say that the orientation of the triangle .s agrees with the orientation 
of the edge e . Let a = (a,, a,, ad) E Z: with la1 = k and ad i, 1 . Bearing 
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Lemma 1 in mind, we define a function 	A,,, on X as follows: 

SBU sBl SBW' sVOm ' l J  
9 x(,., at,,(9) 	 Ae,a(x):= -Vp") if x = o)+B,  r 

for p E Z: with = aG; 

( 0 ,  elsewhere. 
The points x,,, and x,,? will be called the tips of A,,, . 

In the sequel, we always assume that k 2 3r + 2 and consider p := . 
For a vertex u and an oriented interior edge e attached to u ,we consider the 
collections A:, ,defined by 

and 

(11) A:,, := {A,,,: a, = k - n ;  a,, , a,i.< r ) ,  n = y + 1 ,  . . .  , 2r. 

Furthermore, let 

n= 1 

and for an oriented interior edge e , let 

(13) A, := {A,,,: 1 < aa < r < a u ,  aZl< k -p) .  

Finally, let 

where V and E denote the collections of vertices and oriented interior edges 
of A, respectively. By Lemma 1, we see that f E Si 'p(A)  if and only if its 
B-net representation bf satisfies 

(A, bf) = 0 ,  A €A.  

A subset Y of X is called a determining set for the super spline space 
Si 'p(A), if the linear mapping f H bf l r  defined on S i ' I ( A )  is one-to-one. 
Our goal is to find a minimum determining set for this super spline space. 

An interior vertex u is said to be singular, if there are exactly four edges 
attached to it and these edges lie on two straight lines. Otherwise, u is called 
nonsingular. In particular, a boundary vertex is regarded as nonsingular. 

For a vertex u and a triangle z = [u,  v , w] attached to u , let 

X:,,:={X,,~: a u = k - n ) ,  n = 0 ,  1 , . . .  , p ;  

(15 )  	 X::= UX,",,, n = O ,  1 , . . .  , p .  
T 3 U  

We associate with each vertex u a triangle z attached to u and define 
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FIGURE1 .  The points "o" in X," ,, n = p+ 1 , . . . , 2 r ,  
and X;,,  , n = p + 1 , and "* " 'in Ye for nonsingular 
vertex u ( k  = 2 6 ,  r  = 8 ,  p = 1 2 ) .  

Let e be any oriented interior edge with a given u and some v as two of its 
vertices. Also let T and Z be the two triangles attached to e ,  such that the 
orientation of T agrees with that of e ; moreover, denote by w and w the 
third vertices of z and t, respectively. For n = p + I , . . . , 2 r ,  if u is a 
nonsingular vertex, we define X,",, to be the union of the two sets 

and 
{x,,,: a ,  = k - n ;  2 n -  3 r -  15 a ,  < r }  

(see Figure I ) .  If u is a singular vertex and T = [u ,v , w] is a triangle attached 
to u , we define 

X , " , , : = { x a , , : a u = k - n ;  n - r i a ,  S r ) ,  n = p + l ,  . . .  , 2 r ,  

(see Figure 2 ) .  If e is an oriented edge attached to a singular vertex u , we set 

X;,, := X;,, u X,",?,  n = ,D + 1 ,  ... , 2 r ,  

where r and Z are the two triangles with common edge e ;also, set 

Y,":=X," , , ,  n = p + l ,  . . . , 2 r ,  

where r is an arbitrarily chosen triangle attached to u .  For any vertex u ,  
singular or otherwise, we define 

Furthermore, we associate with each oriented interior edge e three sets 
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FIGURE2. The points in X,",, , n = y + 1 ,  . . . ,2 r ,  for 
a singular vertex u (k  = 26, r = 8 ,  y = 12 ). 

and 

(18) 

Finally, for each triangle t , we define 

From the preceding construction we see that X is the disjoint union 

where r denotes the collection of all triangles in A .  
Suppose now that u is a nonsingular vertex. Then for each integer n between 

y + 1 and 2 r ,  we choose a subset 2," of X," such that the cardinality #Z; of 
Z," is equal to #A;, and 

for any subset Z of X," with # Z  = #A;. It is known that the matrix 
(A(x)),,,; has full (row) rank (see [2, Proposition 61 and [7]); hence 

and we will write 

(20) Y," :=X: \ Z : ,  n = p +  1 ,  ... ,2r. 

For each triangle t E A ,  we define 

YT:= x,. 
Finally, we set 
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FIGURE3. The classification of point set X on a trian- 
gle. 

and 

Then from the following theorem, we see that Y is a minimum determining 
set for SL'p(A). 

Theorem 1. For each b: Y H R , there exists a unique f E Si'p(A)such that 
the B-net representation br of f satisfies 

b,lr = b. 
Proof. Let AL := {b E RX: (A,b) = 0 ,  A E A ) ,  where A is given by (14). 
Then f E SL"(A) if and only if bf E A'- ; hence, it suffices to show that for a 
given mapping b : Y H R , there exists a unique i; E AL such that $ 1 ~= b . 

We shall first extend b to U,,, X i  for n = 0 ,  1 , . . . , p . For each u E V , 
(16) tells us that Y; = X i , ,  for n = 0 ,  1 , . . . , p , where 7 is a triangle 
attached to u . On the other hand, there exists a polynomial p, E n k  such that 
its B-net representation bpU on A satisfies bPU(x)= b(x)for all x E Y: ..-. 
We extend b to Us=oX," by setting b(x):= b,,(x) for every x E Uszo X i .  
Evidently, (A, g) = 0 for all iE Us=, A; . 

Next, we extend b to U,,, X," for n = ,u + 1, . . . , 2r .  This is done in- 
ductively on n as follows. Let n be given with p + 1 < n < 2r .  Suppose that 
A A 

b(x)has been determined for x E U::: UuEYX i  in such a way that (A,b) = 0 

for all A E U;:; UuEvAL . We wish to determine the values of on U,,, X i  
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such that for every u E V , 

We claim that the value z (x )  has been determined whenever x E X \ X," and 
A(x) # 0 for some A E A;. To establish this claim, we consider A = A,,, , 
where e is an edge attached to u and a = (a, ,  a,,, a,) with a, = k - n . 
Without loss of generality, we assume that e = [u ,  v] is an oriented interior 
edge and both of u and v are nonsingular, for otherwise the proof is analogous. 
Let z = [u ,  v , w] and 5 = [u ,  v , w] be the two triangles with common edge 
e .  If A(x) # 0 and x X,", then x = xp , ,  for some p E Z: with IPI = k ,  
P, 2 a , ,  Pv L a,, . Thus, we have P, = k - rn for some rn 5 n .  Since 
A 

b(x) has been determined for x E uf:; UUEVX: , we may assume that x 4 
~7:; U U t vx.' . It follows that p + 1 5 rn 5 2 r .  By the definition of X r  , we 
have p, < 2rn -3r - 1 . Consequently, xp, ,  4 X{ for any p > rn . This shows 
that 

2r 

XP , ,  4 U (Xu",e uX;,e). 
n=p+l  

A 

By the definition of Ye , we have x = xp,,  E Ye , and therefore b(x) = b(x) is 
already determined. This verifies our claim. 

Suppose now that u is a nonsingular vertex. Remember that X," is the 
disjoint union of Y," and Z," and b(x) = b(x) for x E Y," . Moreover, 

Thus, the values of on 2," can be determined by solving the system 

of linear equations. 
It remains to deal with the case where u is a singular vertex. Suppose that 

rl , 52, 5 3  and z4 are the four triangles attached to u and arranged in a 
consecutive way. We may assume that Y," = X,",T1, n = p+ 1, . . . , 2r .  Let e, , 
j = 1 ,  2 ,  3 ,  4 ,  be the common edge of z, and r,+l with 7 5  := 71 . We have 
A 

b(x) = b(x) for x E Y," = X,",,l . Note that the matrix (A(x))AEA::,,,. 
,xEX,",,,+, 

is a nonsingular diagonal matrix if the A's and the x ' s  are arranged in an A 

appropriate way. Thus, we can determine the values of b on X,",7,+l, j = 

1, 2 ,  3 ,  by solving the system 

of linear equations. 
It is known (see, e.g., [7]) that the function b so obtained also satisfies 
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Finally, we extend b to all the remaining points X ;  i.e., to the points in 
U,,, X; . This can be easily done by applying the smoothness conditions (4) 
across each interior edge. 

To summarize, we have constructed a function g on X such that g E AL 
A A 

and bly = b . From this construction, we see that such a b is unique. Indeed, 
A 

if b = 0 on Y and E AL satisfies g l y  = b = 0 ,  then b must vanish on all 
of X . This completes the proof of the theorem. 

Theorem 1 suggests the following Approximation Scheme. 

Step 1. Given f E C(A) and a triangle .s E A, find pT E nk such that 

P T x ~ T )  = f a ,  for all lal = k .  

Step 2. Let s E Sg(A) be the spline function given by 

for each triangle .s E A. Then find the B-net representation b of s . 
A 

Step 3. Find in accordance with Theorem 1, such that z l y  = bly and b E 
A' . Let g be the spline in SL'p(A) whose B-net representation b, agrees with 
A 

b on X .  
We denote by T the linear operator f H g , f E C(A) . 
In the sequel, we will denote by a the smallest angle in A,  and by Const,, k 

we mean a constant depending only on a and k ,which may vary from situation 
to situation. We use the notation D, , j = 1 ,  2 ,  to denote the partial derivative 
operators with respect to the j th coordinates. Also, the closed star of v , 
denoted by %(v) =: %'(v) , is the union of all the triangles attached to v , and 
the m-star of v , denoted by S m ( v )  , is the union of all triangles that intersect 

-m- 1
with S t  ( v ) ,  m > 1 . 
Lemma 3. The linear operator T satisjes the following conditions : 

(i) Tp = p for every polynomial p E nk . 
(ii) If .s is a triangle attached to a vertex u ,  then 

--Lr/2]+2
where N(u) denotes the star St ( u ) .  

Proof. The first part of this lemma is a straightforward consequence of the 
construction of T .  The second part will be proved in the next section. 

We are now in a position to establish the main result of this paper 

Theorem 2. If k 2 3r + 2 ,  then there exists a linear operator T from ck+'(A) 
to S;'p(A) such that 

Proof. Let T be the operator described by the above approximation scheme. 

Let f E ck+'(A) be given. In order to estimate the error f - Tf , we consider 
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f ( x )  - ( T  f ) ( x )  , where x is a point in a triangle z of A. Then there exists a 
polynomial p E nk such that p (x)  = f ( x ) and 

(24) I ~ ( ~ ) - f ( ~ ) l < C o n s t k I f l k + ~ , , l ~ l ~ + 'f o r a l l y ~ N ( u ) .  

By Lemma 3, we deduce from (24) that 

If(x) - Tf(x)I= lT(f  - P ) ( ~ ) I  5 IIT(f -~)lTllW 

< Consta,kll(f - ~ ) l ~ ( u ) l l m5 C ~ n ~ t a , k l f l k + l, m 1 ~ l ~ + ' .  

This estimate is valid for every x E A. Hence, the proof of the theorem is 
complete. 

In this section, by using the determining set as described in Section 3, we 
shall construct a basis for SL'p(A) which is both stable and local. 

To begin with, we establish the following result about the norm estimation 
of the B-net ordinates of any function in S;'p(A). 

Theorem 3. Every b E IW"nA' satisfies 

IlblIcc 5 consfa,kIlblYIloc 7 

where Y is the determining set for SL.p(A) as defined by (21). 
Proof. Let M := llblrllm. First, we show that, for n = 0 ,  1 ,  ... , p ,  

(25) 	 Ib(x)(<:Const,,kM, X E U X : .  
lie L' 

Let u be any vertex. Among the triangles attached to u ,  let z = [u,  v , w] be 
the one that contains Y," , and let i= [u , v ,61 be the other triangle attached 
to the edge [u ,  u]. Since b E hi ,we have 

where a = (a, ,  a , ,  aC,)E Z: with la1 = k and a, 2 k - p . From (16) we 
see that 

Ib(x(aU,Crv,~)+~,T)15 a ~ ? k - p 'M 7  

This shows that 

Repeating this process, we obtain 

Ib(x)I<Consta ,kM, XEX:,  n = O , l  , . . .  , p .  

Next, we shall prove (25) for n = p + 1, .. . , 2 r .  If u is a singular interior 
vertex, this can be done by the same argument as before. On the other hand, if u 
is a nonsingular vertex, we then prove (25) by induction on n as follows. Let n 
be an integer in {p  + 1, . . . , 2r) and assume that (25) holds for 0 ,  1, . . . ,n -
1, We wish to prove that (25) also holds for n . For this purpose, we shall 
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employ the smoothness conditions given in Lemma 2. For a triangle T and 
a E Z: with la1 = k ,  we let C,,, be defined as in (5). Let e = [u ,  v] be 
an oriented edge attached to u , and let z = [u,  v , w]and Z = [u,  v , w]be 
the two triangles with common edge e . It is assumed that the orientation of z 
agrees with that of e . By Lemma 2, we have 

for 0 5 m 5 5 k . In order to estimate C,,, ,we introduce A,,, , as follows. 
For each triangle T = [u ,  v ,  w]attached to u and a = (a , ,  a , ,  a,,,) E Z: 
with Ial = k ,  let 

A,, := C,, , for 0 5 at,, at" 5 r. 
Moreover, if a = (k - n , n - I ,  1)  for some (n ,1 )  with p + 1 5 n 5 2r and 
2n - 3r - 1 < 15 n - r - 1, we will consider 

where the coefficients at; are to be determined. Fix an integer j E ( 0 ,  1 , .. . , 
2n-3r -2 ) .  If S, =O,wese t  a!, : = 0  forall 1= 2 n - 3 r - 1 ,  ... , n - r - 1 ;  
otherwise, let a!, be the solutions of the system 

of linear equations. Since the matrix ( ( 7 ) )n-r5m5r, 2n-3r- I 5t5n- r- is invert- 
ible, there exists a unique solution for ( a f J ) .  The choice of (apJ) was made in 
such a way that the equalities 

(26) A(k-n, n-rn ,m )  .t = A - Y .T (m)SF-":,
Sm 

!=2n-3r-1 

are valid for all ( m ,  n) with p + 1 1 n 5 2r and n - r 5 m 5 r . Also, we 
have 

/at, (s,/s,,)J-' / 5 Constk. 

Since 12 2n - 3r - 1 > j and (S,/S,J 5 Const,, ,we obtain 

Next, we define, for convenience, 

and 
A(x,,,,) := Aa,T for x ~ , ?E X:, p + 1 _< n 5 2r 

Then it follows from (26) that 
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Recall from Section 3 that 2," is a subset of X," with #Z," = #A;, such that 
the inequality (19) holds for any subset Z of X," with # Z  = #A;. Rewrite 
(27) as 

and apply Cramer's rule to the above system of linear equations to yield 

(28) lA(x)l I #(Xi \ Z,") m:x (A(y)l, x E Z;, p + 1 5 n 5 2r. 
.VEX" \z, 

Since a is the smallest angle in A, the number of triangles attached to the same 
vertex is bounded from above by a constant depending only on a ; hence we 
have 

#(Xu"\ 2:) < Const, ,k. 

If y = xp ,, for some f l  with flu 2 k - n and y 4 X," , then from the proof 
of Theorem 1, we see that y E (XE, U XTe)U Ye ; thus, by the induction U;:; 
hypothesis, we have 

I b ( ~ ) lI Const,,k M. 

This together with the construction of C(y) and A(y) implies that 

I A ( y ) l I C o n s t a T k M ,  ~ E Y , " = X ; \ Z ; .  

Therefore, by (28), we obtain 

Again, by the construction of C(x)  and A(x) , and by the induction hypothesis, 
we have 

Ib(x) l<Const , ,kM, X E Z ; .  

This establishes (25) for any nonsingular vertex u . 
Finally, for x E X,- , it is easily seen from the smoothness conditions across 

the edge e that 
Ib(x)l 5 C ~ n s t , , ~M. 

This completes the proof of the theorem. 

Now let us establish an equivalence relation between the norm of a spline 
function and that of its B-net representation. 

Lemma 4. Let f E $'(A) and bf its B-net representation. Then 

P 9 )  /Ifilcc 5 libf llx 5 Constk /If(1,. 
Proof. According to the definition of by, we have 

where b, := bf(x,, ,) . Since B, , , are nonnegative and C B, , ,(x) = 1 for 
all x E z ,  it follows that 1 1  f 11, 5 llbj-ll,. 

In order to prove the second inequality in (29), we consider the standard 2-
simplex a := {(xl, x2) : x1, xz 2 0 ;XI + x2 I 1) and a one-to-one affine map- 
ping Q from a onto z . Since barycentric coordinates are invariant under 
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affine transforms, we have B,,, ,(y) = B,,, ,(Qy) for all y E a . Thus, it follows 
from (30) that 

f (Qv)  = C baBa.,().). 
Inl=k 

Since B,, ,, la1 = k , constitute a basis of nk , we have 

lbnl I Constk SUP {lf(Qy)I}I Con% Ilf llw. 
YE, 

This completes the proof of the lemma. 

We are now in a position to describe a procedure for constructing a stable 
basis of S;3p(A). For a given point x in Y , it follows from Theorem 1 that 
there is a unique Bx E Sl 'p(A)  whose B-net representation b satisfies 

Theorem 1 also tells us that { B ,  : x E Y} constitutes a basis of SL>p(A) .  

Theorem 4. The basis {B, : x E Y} of SL'p(A) is stable in the sense that there 
are two positive constants K1 and K2 depending only on k and a such that 

This basis is also local in the sense that for any x E Y there exists a vertex u 
such that 

-lr/2j +1 
(33) suppB, c St (u). 
Proof. We first prove (32). Let f = Ex,, c, B, . Then the B-net representation 
bf of f satisfies bf (x) = c, for all x E Y . By Lemma 4 and Theorem 3, we 
have 

llf I llbrll~5 C0nst0.k SUP /cx/. 
x E Y  

On the other hand, Lemma 4 implies that 

SUP IcxI I IIbfIIm I Con% IIf 11,. 
x E Y  

The desired inequality (32) now follows at once from the above estimates. 
To prove (33), let x E Y be arbitrarily chosen. If x E Y, for some triangle 

z , then supp B, G z . Generally, for a given x E Y ,  there exists a vertex u 
such that the barycentric coordinate (a,, a ,, a , )  of x , with respect to any 
triangle [u , v , w] with u as a vertex, satisfies a ,  > $ . For two vertices u and 
v in A, we denote by d(u ,  v) the smallest number of edges among all paths 
joining u and v . We claim that for any positive integer m I2r + 1 - ,u , if 
d (u ,  v) 2 m ,  then the B-net representation b of B, vanishes on u:::-' X c  . 
This will be proved by induction on m . If m = 1 , then for any vertex v # u , 
b vanishes on UE=oY/ : hence, by the smoothness conditions around v , we 
see that b vanishes on Ulf=, X; . Let 1 < m < 2r + 1 - p and assume that 
our claim has been justified for any positive integer C < m . We must verify it 
for m . Suppose that d(u ,  v) 2 m and d(v , w)  = 1 . Then d(u ,  w) > m - 1 .  
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By the induction hypothesis, we see that b vanishes on u : L ~ - ~(47U x;). 
If y E X \ z!+"-' and A(y) # 0 for some A E A:+~-' , then we see from 
the proof of Theorem 1 that b(y) = 0 .  Hence, b also vanishes on z$+"-'. 
This shows that b vanishes on x{+~-', and therefore completes the induction 
procedure. If d(v ,u) 2 2r + 2 - p and d(v ,w) = I , then b vanishes on 
u;LoX; and u~~~X t  . Moreover, if one of u and v is an interior vertex, 
then b vanishes on X; ,where e is the oriented edge joining v and w . This 
shows that b vanishes on the star S ( v )  of the vertex v . Therefore, since 
2 r + l - p = 2 r + l - j ~ ] = [ ~ ] , w e h a v e  s u p p B , g S t

-[r/2]+1 
(u) -

It only remains to prove part (ii) of Lemma 3. For f E C(A) , let s E 
Sg(A) be the spline functions given in the approximation scheme as described 
in Section 3, and let b be the B-net representation of s . By the construction 
of T f ,  we have 

(34) T f  (x )  = x b ( ~ ! B ~ ( x ) ,x E A. 
Y E Y  

Let r be a triangle of A with vertex u and x E z .  Then By(x) # 0 only 
if d(y  ,U)5 Lr/2J + 2 ,  or equivalently, y E ~ i ~ ~ ~ ~ ' + ~(u) = N(u) . Hence, the 
number of nonzero terms in (34) is bounded above by Const,,k . Moreover, 
llByilm5 Const,.k by Theorem 4. Thus, it follows from (34) that 

By Lemma 4, we may now conclude that 

Combining the above estimates, we obtain the desired result (22). 

1. Recently, de Boor and Jia [3] proved that the order of approximation of 
s;(A) for k 5 3r + 1 and the three direction mesh & is at most k . Hence, 
k = 3r +2 is the smallest degree for which SL(A) achieves the optimal approx- 
imation order of k + 1 . 

2. The main difference between our approach and the previous attempts in 
[5] and [6] is that the set Z," for A: with the property that assertion (28) holds 
for all x E Z," ,n = p+ 1, .. . ,2 r ,  is obtained by applying (19). Consequently, 
the dependence of the approximation error on the near-singularity of the tri- 
angulation A is eliminated. The price to pay is that the supports of the basis 
functions, as given in Theorem 4, are necessarily larger than those of the vertex 
splines in [5]. 
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