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Construction of wavelets and prewavelets over triangulations
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Abstract

Constructions of wavelets and prewavelets over triangulations with an emphasis of the continuous piecewise
polynomial setting are discussed. Some recent results on piecewise linear prewavelets and orthogonal wavelets
are presented.
c© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

In recent years, multiresolution analysis has been intensively studied and has found applications
in number of areas including in signal processing and image compression, computer graphics, and
numerical solutions of di-erential and integral equations. Basically speaking, a multiresolution is a
decomposition of a function space into mutually orthogonal subspaces, each of which is endowed with
a basis. The basis functions of each subspace are called wavelets if they are mutually orthogonal and
prewavelets otherwise. The subspaces are called wavelet spaces and prewavelet spaces accordingly.

While the construction of univariate wavelets is well understood, however, most of real world ap-
plications are multivariate or multiparameter in nature. The construction of multivariate wavelets are
much more challenging. In fact, even the case of continuous piecewise linear wavelets construction
is unexpectedly complicated, see [5–11,17,20] and the references therein. Because of the simplicity
in computing with the linear splines and the importance of the orthogonal space decomposition in
many applications, we emphasize the construction of piecewise linear wavelets and prewavelets in
this paper.

The piecewise linear element is one of the most important and useful elements in solving boundary
value problems. Piecewise linear prewavelets with small support have been constructed in [17,20,8–
11]. The basis in [17] is over an in:nite extended type-1 triangulation, taking advantage of dilation
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and translation over a uniform mesh. The piecewise linear wavelets have 10 nonzero coeAcients in
the mask, which are minimal support. In [14], a characterization of minimum support piecewise lin-
ear prewavelets with only 10 nonzero coeAcients in the mask is given on a bounded domain with a
type-1 triangulation. A construction of wavelets over arbitrary triangulations is presented in [20] and
the wavelets have 23 nonzero coeAcients in the mask. This construction is also applicable in higher
dimensions. In [9], piecewise linear wavelets over a general triangulation of a bounded domain were
constructed under an unusual requirement that the degree of vertices of the triangulation is at most 21.
Later, the same authors presented a so-called semi-prewavelet scheme in [8] and constructed piece-
wise linear wavelets on a bounded type-1 triangulation with 13 nonzero coeAcients in the mask. In
[10], the restriction on the degree of vertices over an arbitrary triangulation is removed by applying
the semi-wavelet approach and using a positive de:nite matrix. Piecewise linear prewavelets over a
type-2 triangulation are constructed in [11] uniquely in the sense that the prewavelets are sum pairs
of so-called semi-prewavelets.

On the orthogonal wavelets construction, continuous piecewise linear orthogonal scaling functions
are constructed in [6] over type-1 and type-2 triangulations. The corresponding wavelets were :rst
constructed in [4] and can also be found in [7].

In this paper, we present some most recent progress on the construction of continuous piecewise
linear prewavelets and orthogonal wavelets over triangulations. On prewavelets construction, we
construct piecewise linear prewavelets over a bounded domain with the type-2 triangulation by
investigating the orthogonal conditions directly and obtain parameterized prewavelets. Conditions on
the parameters for prewavelet basis are also given. On orthogonal wavelet construction, we provide
a new “macroelement” construction of the orthogonal scaling functions from [6] using a technique
developed in [13]. The paper is organized as follows. Preliminaries are introduced in Section 2. In
Section 3, we construct the parameterized wavelets over type-2 triangulations. In the last section,
we discuss orthogonal piecewise linear wavelets over triangulations.

2. Preliminaries

Let �= {�1; �2; : : : ; �M} be a set of triangles and let � =
⋃M

i=1 �i be their union.

De�nition 1. � is a triangulation of � if (i) �i ∩ �j is at most a common vertex or a common edge
for i �= j, (ii) the number of boundary edges incident on a boundary vertex is two, and (ii) � is
simply connected.

If � is a rectangle, say �=[0; m]× [0; n], and � is formed by grids x=k; k=0; : : : ; m; y=‘; ‘=
0; : : : ; n, and one set of parallel diagonals, say, y − x=−m+ 1; : : : ; n− 1, then � is called a type-1
triangulation, denoted by �(1). If � is formed by adding both sets of diagonals, then it is called a
type-2 triangulation, denoted by �(2). In order to simplify the discussion we assume m; n¿ 1.
We denote by V the set of all vertices v of triangles in � and by E the set of all edges e=[v; w]

of triangles in �. For a vertex v∈V , the set of neighbors of v in V is Vv = {w∈V ; [v; w]∈E}.
As usual, let Sr

d(�) denote the spline space consisting of Cr pp (:= piecewise polynomial)
functions of total degree at most d over the triangulation �.
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Suppose next that � is a triangulation. Given data values fv ∈R for v∈V , there is a unique
function f: S0

1 (�) which linearly interpolates the data: f(v) = fv; v∈V . Clearly, the linear space
S0
1 (�) has dimension |V |.
For each v∈V , let �v :� → R be the unique ‘hat’ or nodal function in S := S0

1 (�) satisfying the
interpolation conditions: �v(w) = �vw, where

�vw =

{
1; w = v;

0 otherwise:

The set of functions �= {�v}v∈V is a basis for the space S and for any function f∈ S,

f(x) =
∑
v∈V

f(v)�v(x); x∈�: (2.1)

The support of �v is the union of all triangles which contain v:

�v =
⋃

v∈�∈�

�:

For a given triangulation �0(:= �) = {�1; �2; : : : ; �n}, a re:nement triangulation of �, denoted by
R(�) is a triangulation such that every triangle in � is a union of some triangles in R(�). Obviously,
there are various kinds of re:nements. In this paper, we only consider the following uniform or
dyadic re:nement: For a given triangle � = [x1; x2; x3], let y1 = (x2 + x3)=2; y2 = (x1 + x3)=2, and
y3 = (x1 + x2)=2 denote the midpoints of its edges. The set of four triangles

R(�) = {[x1; y2; y3]; [y1; x2; y3]; [y1; y2; x3]; [y1; y2; y3]}
forms a re:nement of the coarse triangle �. The set of triangles �1 := R(�)=

⋃
�∈� R(�) is evidently

a triangulation and a re:nement of �. Let �j := Rj(�) =R(Rj−1(�)) for j¿ 1. Then, it forms a
sequence of re:nements of the triangulation �: �j; j = 0; 1; : : : :
In order to discuss some properties of �j in relation to �j−1, let V j be the set of vertices in �j,

and de:ne Ej; �j
v; V j

v , and �j
v accordingly. A straightforward calculation shows that

�j−1
v = �j

v +
1
2

∑
w∈V j

�j
w; v∈V j−1: (2.2)

For S0 = S0
1 (�), let Sj = S0

1 (�
j). Then we obtain a nested sequence of spaces:

S0 ⊂ S1 ⊂ S2 ⊂ · · ·
such that

⋃
j¿0 Sj is dense in L2(�). We call the sequence {Sj}∞j=0 of nested spaces a multiresolution

approximation.
For the nested vector spaces:

S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sj ⊂ · · · → L2(�);

let Wj denote the orthogonal complement of the Sj in the space Sj+1, that is,

Sj+1 = Sj ⊕Wj:
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Then Wj can be used to represent the parts of functions in Sj+1 that cannot be represented in the
space Sj. We can call Wj the correcting space. Using j-step corrections, we have

Sj = Sj−1 ⊕Wj−1 = Sj−2 ⊕Wj−2 ⊕Wj−1 = · · ·
= S0 ⊕W 0 ⊕W 1 ⊕ · · · ⊕Wj−1:

Suppose !={ j;‘}‘∈L forms a basis of Wj. If ! is an orthonormal basis of Wj, then the elements
 j;‘ of ! are called wavelets, otherwise, they are called prewavelets.

3. Piecewise linear prewavelets over type-2 triangulations

Piecewise linear prewavelets over a type-2 triangulation are constructed in [11] uniquely in terms
of sum pairs of semi-prewavelets. In this section, we construct piecewise linear prewavelets over
a type-2 triangulation by investigating the orthogonal conditions directly and obtain parameterized
prewavelets. We also provide conditions on the parameters for prewavelet basis.

It is clear that if �0 is a type-2 triangulation, then its re:nement �1 = R(�) again is a type-2
triangulation and so is �j for any positive integer j. For S0 = S0

1 (�
(2)), let W 0 be the orthogonal

complement space of S0 in S1, that is, S1 = S0 ⊕W 0. Similarly, if we de:ne the wavelet space Wj

to be the orthogonal complement of Sj in Sj+1 at every re:nement level j, that is

Sj+1 = Sj ⊕Wj;

then we obtain the decomposition

Sj = S0 ⊕W 0 ⊕W 1 ⊕ · · · ⊕Wk−1;

for any j¿ 1. We would like to obtain a basis of functions with small support for the purpose of
conveniently representing the decomposition of a given function fj+1 in Sj+1 into its two unique
components fj ∈ Sj and gj ∈Wj: fj+1=fj⊕gj. Note that the basis elements of any Wk can simply
obtain from the basis of W 0 using a dilation operator, we can restrict our study only to W 0.

The dimension of W 0 is |V 1| − |V 0| = |E0| which is equal to the number of midpoints added to
V 0 to form V 1. Let us simply associate a wavelet  u in W 0 with each vertex u in V 1\V 0 and derive
a general suAcient condition for the set ! = { u}u∈V 1\V 0 to constitute a basis of W 0 .

As an element in S1, the function !u can be written as a linear combination of the basis function
�1

w, namely

 u(x) =
∑
w∈V 1

qw;u�1
w(x); (3.1)

where, the coeAcients of  u are qw;u =  u(w); w∈V 1. The set of nonzero coeAcients in (3.1) is
called the mask of  u. Our aim is to construct a basis of W 0 with a small number of coeAcients in
the mask for each basis element, or equivalently, with a small support of each basis function.

A suAcient condition on these coeAcients for ! to form a basis of W 0 can be derived by
evaluating the  u at the vertices in V 1\V 0. Let u1; : : : ; un; n= |E0|, be any ordering of the vertices
in V 1\V 0. Since any element of S has a unique representation, we see that the element  u of S1
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belongs to W 0 if and only if

〈�0
v ;  u〉=

∑
w∈V 1

〈�0
v ; �

1
w〉qw;u = 0; v∈V 0: (3.2)

Then it is easy to prove the following (see [8]).

Theorem 2. A set ! of functions { u1 ; : : : ;  un} in W 0 is a basis of W 0 if the matrix Q= (qui;uj)i; j
is nonsingular.

To construct a small support basis, we follow the idea presented in [9], for a ‘new’ vertex
u∈V 1\V 0, we try to construct a nontrivial wavelet  u ∈W 0 associated with the vertex u, whose
support is around u, i.e., it has the form

 u(x) =
∑

w∈V (u)

qw;u�1
w(x); (3.3)

where V (u) ⊂ V 1 is a small set of vertices of �1 which are near to u.
In [11], the authors introduced a so-called semi-wavelets approach to seek prewavelets for the

space W 0 in terms of sum pairs of elements 'v1 ;u and 'v2 ;u (called semi-wavelets) of S1 which have
small support and are close to being in the wavelet space W 0, in the sense that they are orthogonal
to all but two of the nodal functions in the coarse space, where u is the midpoint of the edge
[v1; v2]. Depending on the locations of v1, either v1 = (i+ 1=2; j + 1=2) or v1 = (i; j), there are three
interior semi-wavelets that generate two interior prewavelets  u in the sense that v1 and v2 are both
interior vertices of �0 up to rotation and symmetries. Similarly, there are three edge prewavelets  u

for which one of v1 and v2 is an interior vertex while the other one lies on the boundary but not
the corner. The remaining two prewavelets are corner prewavelets. Requiring the prewavelets being
the sum pairs of semi-wavelets, it has been shown in [11] that those seven kinds of prewavelets are
uniquely determined. For the second kind of interior prewavelets, there are 13 nonzero coeAcients
in the masks.

We take the same structures of V (u) as described in [11] and try to construct prewavelets with
fewer coeAcients in the masks. It turns out that we obtain parameterized prewavelets. For the second
kind of interior prewavelets, we have only 11 nonzero coeAcients in the masks. In the following,
we construct only two interior parameterized prewavelets and provide expressions of three edge
prewavelets, and two corner prewavelets.

We label the vertices of V (u) as in Fig. 1. Let  0;1
u ∈W 0 be the prewavelet associated with vertex

u having the following expression:

 0;1
u = a�1

u + b1�1
1 + b2�1

2 + b3�1
3 + b4�1

4 + b5�1
5 + b6�1

6 + b7�1
7 + b8�1

8

+ b9�1
9 + b10�1

10 + b11�1
11 + b12�1

12 + b13�1
13 + b14�1

14 + b15�1
15 + b16�1

16;

where a and bi; i=1; : : : ; 16 are determined by using the orthogonality conditions: 〈'u; �0
Pi
〉=0; i=

1; : : : ; 12 and 〈'u; �0
1〉= 0; 〈'u; �0

13〉= 0. We obtain the following system of equations:

M1x1 = 0; (3.4)
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Fig. 1. Support of the :rst interior prewavelet.

where

M1 =




4 1 6 4 0 0 0 0 0 0 0 0 0 1 0 4 6

0 1 1 12 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 4 6 4 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 12 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 4 6 4 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 12 1 0 0 0 0 0 0 0

4 1 0 0 0 0 0 4 6 6 4 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 12 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 4 6 4 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 12 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 1 6 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 12 1

12 24 8 12 8 12 8 12 8 1 0 0 0 1 0 0 1

12 1 1 0 0 0 0 0 1 8 12 8 12 24 8 12 8




:

and x1 = [a; b1; : : : ; b16]T.
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Fig. 2. Support of the second interior prewavelet.

We solve the equations system M1x1 =0 by letting b14 =0; b11 =0; b6 =0, and b4 =0 and obtain
that

x1 = [38t1;−12t1;−12t1; 2t1; 0; t1; 0; 2t1;−12t1;−12t1; 2t1; 0; t1;−12t1; 0; 2t1;−12t1]T

for a parameter t1 �= 0. Therefore, the :rst interior prewavelet  0;1
u ∈W 0 have the following expres-

sion:

 0;1
u =38t1�1

u − 12t1�1
1 − 12t1�1

2 + 2t1�1
3 + t1�1

5 + 2t1�1
7 − 12t1�1

8 − 12t1�1
9

+ 2t1�1
10 + t1�1

12 − 12t1�1
13 + 2t1�1

15 − 12t1�1
16;

where �1
i ; i = u; 1; : : : ; 16 are nodal basis functions in S1.

Indexing the vertices of V (u) as in Fig. 2, we assume that the second interior prewavelet associated
with u has the following expression:

 0;2
u = b1�1

1 + a�1
u + b4�1

4 + b5�1
5 + b6�1

6

+ b7�1
7 + b8�1

8 + b9�1
9 + b10�1

10 + b11�1
11 + b12�1

12;

where �1
i ; i = u; 1; : : : ; 12 are nodal basis functions in S1. By the orthogonal conditions, 〈�0

u; �
0
Pi
〉

= 0; i = 1; : : : ; 8 and 〈�0
u; �

0
1〉 = 0; 〈�0

u; �
0
10〉 = 0, we obtain the following system of linear

equations:

M2x2 = 0; (3.5)
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where

M2 =




24 12 8 12 8 12 8 12 8 1 3 0 1

1 12 1 0 0 0 0 0 1 8 3 1 0

1 4 6 4 0 0 0 0 0 6 20 6 6

1 0 1 12 1 0 0 0 0 0 3 1 8

1 0 0 4 6 4 0 0 0 0 0 0 0

1 0 0 0 1 12 1 0 0 0 0 0 0

1 0 0 0 0 4 6 4 0 0 0 0 0

1 0 0 0 0 0 1 12 1 0 0 0 0

1 4 0 0 0 0 0 4 6 0 0 0 0

0 0 0 0 0 0 0 0 0 1 3 8 1




and x2 = [b1; a; b4; b5; b6; b7; b8; b9; b10; b11; b12]T.
We solve (3.5) and obtain the following solutions:

b1 =−15t2; a= 253
6 t2; b4 = 11

6 t2; b5 = t2; b6 = 7
6 t2; b7 = t2

b8 = 11
6 t2; b9 = t2; b10 =−14t2; b11 = 5t2; b12 = t2;

where t2 is a nonzero arbitrary real number.
This second interior prewavelet only has 11 nonzero coeAcients in the mask.
Corresponding to Figs. 3–5, three edge prewavelets and two corner prewavelets, respectively, are

given as follows.
The :rst edge prewavelet is

 0;3
u = a�1

u + b1�1
1 + b2�1

2 + b3�1
3 + b4�1

4 + b5�1
5 + b6�1

6 + b7�1
7 + b8�1

8 + b9�1
9 + b10�1

10

= 38t3�1
u − 12t3�1

1 − 12t3�1
2 + 2t3�1

3 + t3�1
5 +−12t3�1

6 + t3�1
7 + 2t3�1

9 − 12t3�1
10;

where t3 �= 0 and the vertices are labeled as in Fig. 3a.
The second edge prewavelet is

 0;4
u = a�1

u + b1�1
1 + b2�1

2 + b3�1
3 + b4�1

4 + b5�1
5 + b6�1

6 + b7�1
7

= 102
5 t4�1

u − 77
5 t4�1

1 +
3
5 t4�

1
2 +

4
5 t4�

1
3 +

6
5 t4�

1
4 + t4�1

5 − 32
5 t4�1

6 +
12
5 t3�1

7;

where t4 �= 0 and the vertices are labeled as in Fig. 3b.
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Fig. 3. Support of :rst and second edge prewavelets.

Fig. 4. Support of the third edge prewavelet.

The third edge prewavelet has a support shown in Fig. 4 and is given by

 0;5
u = a�1

u + b1�1
1 + b2�1

2 + b3�1
3 + b4�1

4 + b5�1
5 + b6�1

6 + b7�1
7 + b8�1

8 + b9�1
9

+ b10�1
10 + b11�1

11 + b12�1
12 + b13�1

13

= 39t5�1
u − 24t5�1

1 + 4t5�1
2 − 12t5�1

3 − 12t5�1
4 + 4t5�1

5 − 12t5�1
6 + 2t5�1

7 + t5�1
9

+ 2t5�1
11 − 12t5�1

12 − 12t5�1
13;

for a parameter t5 �= 0.
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Fig. 5. Support of corner prewavelets.

The support of the remaining two corner prewavelets are shown in Fig. 5 and they have the
following expressions:

 0;6
u = a�1

u + b1�1
1 + b2�1

2 + b3�1
3 + b4�1

4 + b5�1
5 + b6�1

6 + b7�1
7 + b8�1

8

= 39t6�1
u − 24t6�1

1 − 12t6�1
2 + 4t6�1

3 − 12t6�1
4 − 12t6�1

5 + t6�1
6 + 2t6�1

8

and

 0;7
u = a�1

u + b1�1
1 + b2�1

2 + b3�1
3 + b4�1

4 + b5�1
5 + b6�1

6 + b7�1
7

= 20t7�1
u − 24t7�1

1 + t7�1
4 − 6t7�1

5 + 2t7�1
6 + t7�1

7

for parameter t6; t7 �= 0.
All prewavelets in W 0 can be obtained by rotating or reOecting these seven prewavelets. In

particular, setting t1 = 1; t3 = 2; t5 = 1; t6 = 2, and t7 = 4, we obtain the corresponding prewavelets
described in [11].

By showing the corresponding matrix Q is diagonal dominant, we obtain the following theorem
which provides suAcient conditions on the parameters tk ; k = 1; : : : ; 7 to ensure that the set of
prewavelets ! = { u}u∈V 1\V 0 obtained by using symmetries and rotations from  0; ‘

u ; ‘ = 1; : : : ; 7
becomes a basis of the wavelet space W 0.

Theorem 3. The set != { u}u∈V 1\V 0 is a basis of W 0 if the parameters t‘ �= 0; ‘=1; : : : ; 7 satisfy
the following:

144
149 |t1|¡ |t2|¡min{7|t1|; 5|t7| − 6|t6|}
5
96 (

41
6 |t2|+ 12|t3|+ 12|t5|)¡ |t4|¡min(58(18|t3| − 4|t5|);

5
8 (39|t5| − 4|t3| − 5|t1| − 2|t2|; 12 (35|t6| − 4|t5| − 5|t3|)):

Remark 1. Working with triangulations of arbitrary topology for applications in computer graphics,
the approach taken by Lounsbery et al. [18] is based on the use of subdivision schemes to :rst
consider piecewise linear prewavelets with global support. They subsequently truncate them to a small
region, and thus producing functions that are no longer elements of the orthogonal complementary
wavelet space.
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Remark 2. The construction of prewavelet systems in the general framework of multiresolution
analysis generated by the shifts and dilates of a re:nable function, in particular, by box splines, has
been extensively studied in [1,16,19]. The theory developed by Jia and Micchelli [16] leads in the
piecewise linear case to examples of prewavelets with 69 nonzero coeAcients in the masks.

Remark 3. Multiresolution approximation using C1 quadratic splines is studied based on Powell–
Sabin 6-split in [3]. Very recently, a hierarchical basis for C1 cubic bivariate splines is used for
surface compression in [15].

Remark 4. Biorthogonal piecewise linear elements can be found in [2].

4. Piecewise linear orthogonal wavelets

Two examples of piecewise linear orthogonal continuous scaling functions on triangulations were
constructed in [6], one example on a regular type-1 triangulation and the other on a regular type-2
triangulation. The wavelets were constructed in [4]. Both the scaling functions and the wavelets are
compactly supported. In this section we review the construction of the type-1 triangulation scaling
functions of [6] by :rst constructing an orthogonal, re:nable “macroelement” - (see [13] for more
on constructing re:nable macroelements) which may be naturally adapted to an arbitrary triangulation
� to get a space S(�;-). In the case that � is a regular type-1 triangulation of R2, then we retrieve
the scaling vector of [6]. The calculations in this section were all done with the aid of the computer
algebra system Mathematica. See [12] for a package used to aid with these calculations.

Let (�j)j¿0 denote the “semi-regular” re:nement scheme �j+1 = R(�j) with �0 = � and let
Sj := S(�j; -) for j=0; 1; : : : : Then Sj ⊂ Sj+1; j¿ 0, and the sequence of spaces (Sj)j¿0 forms a
multiresolution of L2(�). Here we restrict our discussion to the construction of - and to the space
S(�;-). See [13] for a procedure for :nding local orthogonal bases (that is, the wavelets) for the
spaces Wj := Sj+1 � Sj.

Let u0=(0; 0); u1=(1; 0), and u2=(1=2;
√
3=2) and let �0 denote the equilateral triangle [u0; u1; u2].

We recast the construction of the orthogonal piecewise linear scaling vector given in [6] in terms of
a macroelement of orthogonal piecewise linear functions on �0. These functions will then be pieced
together to construct an orthogonal basis for V0(�) for a given arbitrary triangulation �.

4.1. C0 symmetric macroelements on �0

Let �0={�0} and recursively de:ne �j+1=R(�j) for j=0; 1; 2; : : : : The spline spaces Sj=S0
1 (�

j)
form a multiresolution of L2(�). For j = 0; 1; 2; : : : and a vertex v∈V j := V (�j), let �j

v :R2 → R
denote the piecewise linear function on the triangulation on �j taking the value 1 at v and 0 for all
other vertices v′ ∈V j. Let C(�0) denote the collection of continuous real-valued functions on �0. If
f is a function on a set A and B ⊂ A we let f|B denote the restriction of f to B and, for collection
of functions F de:ned on A, we let

f|B := {f|B: f∈F}
denote the collection of restrictions of the elements of F to B.
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If - ⊂ C(�0) we partition - into the following seven subsets:

-�0 := {1∈-: 1|@�0 = 0};

-e := {1∈-: 1|e′ = 0 for e′ ∈E(�0) and e′ �= e}\-�0 ; (e∈E(�0));

-v := {1∈-: 1|ev = 0}
∖
-�0 ∪

⋃
e∈E(�0)

-e


 ; (v∈V (�0));

where ev denotes the edge of �0 not containing v.
Let r0 denote the rotation taking u0 → u1; u1 → u2, and u2 → u0 and let r1 denote the reOection

taking u0 → u1; u1 → u0, and u2 → u2. For a set of functions - ⊂ C(�0) and a continuous function
r : �0 → �0 let

- ◦ r := {1 ◦ r: 1∈-} ⊂ C(�0):

De�nition 4 (C0 symmetric macroelement). We call a :nite collection of functions -={11; : : : ; 1n};
1i ∈C(�0), a C0 symmetric macroelement (or just macroelement) if

(a) for each 1∈- and i = 0; 1, there is some 3∈{−1;+1} such that 31 ◦ ri ∈-,
(b) -v = {1v} where 1v ∈- is symmetric about the line from v to the midpoint of the edge ev

opposite v, that is, if r is the reOection about this line, then 1v ◦ r = 1v and 1r0(v) ◦ r0 = 1v for
v∈E(�0),

(c) -r0(e) ◦ r0 = -e for e∈E(�0), and
(d) -e|e is linearly independent for e∈E(�0).

Suppose - is a C0 symmetric macroelement. We say - is an orthogonal macroelement if - is
an orthonormal set, that is, if 〈1; 1′〉= �1;1′ for 1; 1′ ∈-.
Further suppose � is a triangulation. The space S(�;-) is de:ned by

S(�;-) := span{1 ◦ !�: �∈�; 1∈-} ∩ C(R2)

where for each �∈�; !� :R2 → R2 denotes one of the six possible aAne mappings such that
!�(�) = �0.
We say that a macroelement - is re3nable if S(�0; -) ⊂ S(�1; -).

Remark 5. See [13] for a more detailed development of wavelet constructions based on macroele-
ments. Condition (d) implies that -v consists of a single function 1v whose restriction to the boundary
of �0 is in 51 and is such that 1v(v′) = �v;v′ for v; v′ ∈V (�0).

Remark 6. The symmetry properties of a C0 symmetric macroelement imply that S(�;-) is inde-
pendent of the choice of the aAne mapping !� for each �∈�.

Remark 7. If - is re:nable then it follows that S(�;-) ⊂ S(-;R(�)) for any triangulation �.
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Let � be an arbitrary triangulation in R2 with � =
⋃

�∈� �. We next construct a local basis of
functions for the space S(�;-) for an arbitrary triangulation �. The basis functions are of three
types: triangle functions supported on individual triangles �∈�, edge functions supported on the
union of the triangles containing an edge e∈E(�) (there are either one or two such triangles) and
vertex functions supported on the star of a vertex v∈V (�) (the star of a vertex v is the union of
the triangles containing v).

First, for �∈�, let

-� := {1 ◦ !�: 1∈-�0}:
Second, we de:ne basis functions associated with each edge e∈E(�). If e is a boundary edge,

let � denote the single triangle in � containing e and then let

-e := {6 ◦ !�: 6∈-!�(e)}:
If e∈E(�) is an interior edge, let �a and �b denote the two triangles in � containing e. Let ea=!�a(e)
and eb = !�b(e). Then ea and eb are edges of �0. Let s be the aAne mapping such that s(�0) = �0

and such that s ◦ !�b |e = !�a |e. For 6∈-ea then there is some

1e
6(x) :=




6 ◦ !�a(x) (x∈ �a);

6 ◦ s ◦ !�b(x) (x∈ �b); and

0 otherwise

and

-e := {1e
6: 6∈-ea}:

Note that if the labels of the triangles �a and �b are switched, then we at most introduce a change
of sign in the de:nition of 1e

6.
Finally, if v∈V (�), let

1v :=

{
1!�(v) ◦ !� for �∈� with v∈ �;

0 otherwise:

One may verify using properties that 1�; 1e, and 1v are well de:ned and in S(�;-) where
�∈�; e∈E(�); v∈V (�). Let T� := � ∪ V (�) ∪ E(�). As we verify in [13], the above functions
form a local basis of S(�;-):

Lemma 5. Suppose - is a C0 symmetric macroelement. Then
⋃

8∈T�
-8 forms a basis for S(�;-).

4.2. A piecewise linear orthogonal macroelement

We start with a macroelement

-0 = (�0
u0 ; �

0
u1 ; �

0
u2 ; �

1
(u0+u1)=2; �

1
(u0+u2)=2; �

1
(u1+u2)=2):
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Fig. 6. The components 91; 92 and 93 of the piecewise linear orthogonal macroelement :. Note 92 =91 ◦ r0 and 93 =92 ◦ r0.

Then S0
1 (�

1)=S(�0; -0)=span-0. Let -1 =-0∪ (�2
(2u0+u1+u2)=4; �

2
(u0+2u1+u2)=4; �

2
(u0+u1+u2)=4) (with the

implied ordering). Then -1 satis:es

S(�0; -0) ⊂ S(�0; -1) ⊂ S(�1; -0)

from which it follows that -1 is re:nable.
We proceed to construct an orthogonal macroelement : such that

S(�0; -1) ⊂ S(�0; :) ⊂ S(�1; -1)

from which it follows that : is re:nable and that the components of : are in S1
0 (�

2), that is, the
components are continuous (when restricted to �0) and piecewise linear on the triangulation �2. The
construction hinges on :nding two functions ; and < in S(�1; -1) satisfying certain conditions that
make the construction of an orthogonal macroelement possible.

The :rst step in constructing : is to choose an orthonormal basis for the three-dimensional space

span(-1)�
0
= span(’2

(2u0+u1+u2)=4; �
2
(u0+2u1+u2)=4; �

2
(u0+u1+u2)=4)

of the form (91; 91 ◦ r0; 91 ◦ r20) where 91 = 91 ◦ r1. Then 91 must be of the form 91 = >�2
(2u0+u1+u2)=4 +

?�2
(u0+2u1+u2)=4 + ?�2

(u0+u1+2u2)=4 for some constants > and ?. The conditions 〈91; 92 ◦ r0〉 = 0 and
〈91; 91〉= 1 are equivalent to the equations

>2 + 14 > ? + 9?2 = 0

3>2 + 2>? + 7?2 = 64
√
3:

Choosing the most ‘localized’ (the solution with the largest |>| and smallest |?|) of the 4 distinct
solutions for > and ? gives > = 3−3=4(4 + 16

√
2=5) and ? = 3−3=4(4 − 8

√
2=5). Fig. 6 shows the

resulting 91.

4.2.1. The function ; = 94
Next we :nd ;∈ S(�1; -1) such that ; vanishes on @�=0; ; is symmetric (that is, ; ◦ r= ; for

any isometry r leaving �0 invariant), ; is orthogonal to 91 (and therefore ; is also orthogonal to 92
and 93 by symmetry) and such that

(I − P;)(-1)e ⊥ (-1)e
′ ∪ (-1)v
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for e �= e′ ∈E(�0) and v the vertex of �0 opposite of e where P; denotes the orthogonal projection
onto the subspace spanned by ;.

The symmetry of ; implies that ; must lie in a subspace of S(�1; -1) spanned by the four
functions

;1 = �3
(6u0+u1+u2)=8 + �3

(u0+6u1+u2)=8 + �3
(u0+u1+6u2)=8

;2 = �3
(5u0+2u1+u2)=8 + �3

(5u0+u1+2u2)=8 + �3
(2u0+5u1+u2)=8

+�3
(2u0+u1+5u2)=8 + �3

(u0+5u1+2u2)=8 + �3
(u0+2u1+5u2)=8

;3 = �3
(2u0+3u1+3u2)=8 + �3

(3u0+2u1+3u2)=8 + �3
(3u0+3u1+2u2)=8

;4 = �2
(2u0+u1+u2)=4 + �2

(u0+2u1+1u2)=4 + �2
(u0+u1+2u2)=4

Expanding ; in the above basis, we write

; =
4∑

i=1

>i;i:

The condition that 〈;; 91〉= 0 is equivalent to

>1 + 10>2 + 11>3 + 32>4 = 0:

By symmetry, the condition (I −P;)(-1)e ⊥ (-1)e
′
for e �= e′ ∈E(�0) is equivalent to the condition

〈(I − P;)�2
(u0+u1)=2; �

2
(u1+u2)=2〉= 0 which is equivalent to :nding nonzero ; such that

〈�2
(u0+u1)=2; �

2
(u1+u2)=2〉=

〈�2
(u0+u1)=2; ;〉〈;; �2

(u1+u2)=2〉
〈;; ;〉

which is equivalent (for >1; : : : ; >4 not all zero) to the equation

−5(37>1 + 34>2 − 25>3)2 + 192(3>21 + 2>1>2 + 7>22 + 4>23

+ (>1 + 10>2 + 11>3)>4 + 16>24) = 0:

The :nal condition that (I − P;)(-1)e ⊥ (-1)v (where v is the vertex opposite the edge e) is
equivalent, by symmetry, to the condition 〈(I − P;)�2

(u0+u1)=2; �
2
u2〉= 0 which is equivalent to

−1103>21 − 2172>1>2 − 572>22 + 1430>1>3 + 1260>2>3

−119>23 + 64>1>4 + 640>2>4 + 704>3>4 + 1024>24 = 0:

Solving the above three equations together with the normalization condition 〈;; ;〉 = 1 gives four
distinct real solutions, among which we choose

(>1; >2; >3; >4) =
2
√
179

31=8( 770053 − 1640
√
17)1=4

×
(
8(−81 + 7

√
17)

537
;
−32(14 +

√
17)

537
;
8(−137 + 3

√
17)

537
; 1

)
:

We let 94 = ;. Fig. 7 shows ; for the above choice of (>1; >2; >3; >4).
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Fig. 7. The component 94 = ; of the piecewise linear orthogonal macroelement :.

The function 94 = ; is the last of the ‘triangle’ components of :, that is,

:�0 = {91; 92; 93; 94 = ;}:
We next de:ne 95 ∈:[u0 ; u1] by

95 := a(I − P:�0 )�1
(u0+u1)=2 = a

(
�1
(u0+u1)=2 −

4∑
i=1

〈�1
(u0+u1)=29i〉9i

)

where a is chosen so that ‖95‖= 1. Furthermore, let 96 := 95 ◦ r0, and 97 := 96 ◦ r0. Then from the
construction of ; it follows that {91; : : : ; 97} is an orthonormal set and, furthermore, 95 ⊥ �0

u2 (and,
by symmetry, we also have 96 ⊥ �0

u0 and 97 ⊥ �0
u0).

4.2.2. The function <= 98
We next :nd a function <∈ S(�1; -1) that will be the second component of :[u0 ; u1]. We require that

(a) < is antisymmetric about with respect to the reOection r1 leaving �0 and e = [u0; u1] invariant,
(b) < is orthogonal to 91; 92, and 93, or equivalently, < ⊥ :�0 since < is orthogonal to 94 by
symmetry, (c) < is orthogonal to 96 (and, hence also 97) (d) < is orthogonal to < ◦ r0, and (e)
(I − Pspan{<; 95})�

0
u0 ⊥ �0

u1 .
First, the antisymmetry of <∈ S(�1; -1) implies that < is in a seven dimensional space spanned

by the functions

<1 := �2
(3u0+u1)=4 − �2

(u0+3u1)=4 <5 := �2
(2u0+u1+u2)=4 − �3

(u0+2u1+u2)=4

<2 := �3
(6u0+u1+u2)=8 − �3

(u0+6u1+u2)=8 <6 := �3
(3u0+2u1+3u2)=8 − �3

(2u0+3u1+3u2)=8

<3 := �3
(5u0+2u1+u2)=8 − �3

(2u0+5u1+u2)=8 <7 := �3
(2u0+u1+5u2)=8 − �3

(u0+2u1+5u2)=8

<4 := �3
(5u0+u1+2u2)=8 − �3

(u0+5u1+2u2)=8
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Fig. 8. The component 98 = < of the piecewise linear orthogonal macroelement :.

Expanding < in terms of <1; : : : ; <7 we write

<=
7∑

i=1

?i<i:

By symmetry, condition (b) reduces to < to the single linear equation

4?1 + ?2 + 5(?3 + ?4 + 4?5) + 4?6 = 0

and the condition (c) reduces to

4?1 + 11?2 − 5?3 + 10?4 − ?6 + 15?7 = 0:

Condition (d) then reduces to the nonlinear equation

0= 4?2
1 + 10?1?2 + 6?2

2 + 2?1?3 + 2?2?3 + ?2
3 + 10?1?4 + 2?2?4 + 12?3?4 + ?2

4 + 8?1?5

+2?2?5 + 10?3?5 + 10?4?5 + 20?2
5 + 8?5?6 + 5?2

6 − 8?1?7 − 10?3?7 + 10?4?7

and condition (e) reduces to the nonlinear equation

0= 4416?2
1 + 9248?1?2 + 2361?2

2 − 1120?1?3 + 1270?2?3 − 2175?2
3 + 4960?1?4 + 3340?2?4

+ 100?3?4 − 1500?2
4 − 3200?1?5 − 800?2?5 − 4000?3?5 − 4000?4?5 − 8000?2

5

− 1728?1?6 − 1242?2?6 − 270?3?6 − 540?4?6 − 3200?5?6 − 1919?2
6 + 2880?1?7

+ 2070?2?7 + 450?3?7 + 900?4?7 − 270?6?7 − 1775?2
7:
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Solving these equations numerically we :nd the numerical solution giving < with ‖<‖= 1:

?1 = 4:012855924 ?2 = 3:926833442 ?3 = 13:579612984

?4 = −0:5558588712 ?5 = −4:633021348 ?6 = 1:8908498152

?7 = 1:0733941264

The resulting < is shown in Fig. 8 and we set 98 = <; 99 = 98 ◦ r0, and 910 = 99 ◦ r0.
Finally, we de:ne 911 = (I −Pspan{91 ;:::;910})�

0
u0 ; 912 = 911 ◦ r0, and 913 = 912 ◦ r0. Then it follows that

:={91; : : : ; 913} is an orthogonal macroelement with :�0={9i: i=1; : : : ; 4}; :[u0 ; u1]={9i: i=5; : : : ; 10},
and :u0 = {911}.
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