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SPACES OF BIVARIATE SPLINE FUNCTIONS
~ _OVER TRIANGULATION*

Hong Dong(¥t7)

(Zhejiang, University, China)
Received Oct. 22, 1987, Revised Apr. 26, 1990
Absract

We consider the spaces of bivariate C"—splines of degree k defined over arbitrary
triangulations of a polygonal domain. We get an explicit formula for the dimension of such
spaces when k= 3u+2 and construct a local basis for them. The dimension formula is valid for
any polygonal domain even it is complex connected, and the formula is sharp since it evaluates
the lower—bound which was given by Schumaker in [11].

.§1 Introduction . VR

~

As usual, let Q be a subets of R?, and let A = {z I}': be a collection of closed triangles

such that \ 4
i) For all i, if =, the intersection N 7, is either empty, their common dege or their

common vertex.
- i
ii) Q=) 7,.
Then we call A a triangulation of Q.
Given a positive integer k,we denote by [T, the space of all polynomials in two varia-

bles with total degree < k. For a triangulation A of Q, let
,5":.'.A == {'s; sI" enk, i= L..;JVT}
be the linear space of splines defined over A and
» B :
Sia=5,..0NC" S BAE

We call S§, the spaces of bivariate polynomial splines of degree< k and smoothness x as-

sociated with the partition A.

« The author wishes to thank sincerely professor Rongqing Jia for his encouragement and advice

S
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It is clear that S =S :A is a linear space. Our main results of this paper is about com-

puting its dimension and constructing a local basis. The work in this regard was initiated
Strang''¥, Morgan & Scott (0 and'Schumaker ''". Here we follow them and introduce

some notation first.
Given a triangulation A of Q, we denote by E,E,V and ¥, thesets of edges, interi-

or edges, vertices and interior vertices of A\ respectively. Let

E,=E\E,. and V,=W\V, (1.2)

Given a vertex veV, we use e, to denote the number of edges with different slopes

attached to v. The cardinal number of a set A is denoted by |A4].

a) A standard cell with b) A standard cell
an interior vertex v " with respect to v
' Fig.1 Standard cells
cell
A set Q triangulated by A = {} is called a standardj\with respect to v, if all triangles of
A\ have the vertex v in common. Figgre 1 shows two typical examples of standard cell. The

follwoing results which is about dimension of bivariate splines spaces defined over standard

cells was proved by Schumaker 1,

Theorem S, LetQbea standared cell triangulated by A and v the interior vertex.Then
. »
dlm(SkA)=a+ﬂ|Eo|—v+o',, (1.3)

where
(k + 1)(k +2) (k—w(k—p+1)
o TR 2 ’
(et D)(+2)  (u+ D(p + 2)
y— 2 o 2 )
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k—n

o =Y (u+j+1—je 2 Ak BT he T e sl (1.4)

/=1

In general cases of partmon A Schumaker gave out a 1ower—bo.und for the dxmensxon
of % in the same paper. But it is valid on]y for sxmply connected domaims (see secuon 3
of out paper). . 1) e

Theorem S, Let A beat_rg'a_ngulagio_nofﬂ. I:her: ; y 4 _'_, B, e

dim(s”* );a+ﬂlE Bk LR S A (1.5)
where a8,y and o, are given by (1.4), while

N e e S (1)

Concerning the formula of the dimension of Sko » Morgan & Scott ' considered the
case y=1, k> 5; Alfeld & Schumaker!, and R. H. Wang & X. G. Lu respectively got the
dimention of S 4 with the restriction kZ4u+1. In our paper, we consider the case k= 3u+2
and get an explicit formula for the dimension of St by means of an important method—

B—net representation of spline functions.
Here is an outline of this paper. In section 2, we introduce B—net and its relanve prop-

erties. In the third section, we state and prove the dimension formula of the space Ska
Finally, in section 4 we construct a local basis for S“ then close the paper with remarks.

§3 Deset

In this section we briefly review B—net representauon of splmes and the relative prop-
erties. We use the standard multi—index notation. For x= (az“,al X, )eZ , the length |af

of a is defined by |a| = ay+a,+x,. Moreover,
. i e b\ fal! R
al =g lalal, . ('a’ gF.. AT S
" Lett={v"y' v } denote the tnangle thh vertxces vo,v and v, If 7 is not degén-
erated, then any xeR’ eanbeumquelyexprouedas 8 wanad
=g+ ey eV, E e e =1

The 3—tuple ¢ = = (¢ 1¢,) is called the barycentric coordinate of x with respect to the
triangle 7.

For any ani , we denote

2o =(")e,

R




4
4
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where &' =g & E.
It is evident that {B_; |a| =k} froms a basis for II,, hence any pell, can be ex-

press_ed as
p(x)= T b B (x).
o=k
"The coefficients {b‘}u_ , are called the Bézier coordinates of p(x) with respect to the
triangle t.
Clearly, we have
Z B (x)= 1
e =k

and

B (x)>0 for xert.
For the triangle = {v’,v';»’}, let

x -%(ao,v%q:,v‘ﬂ,y?), el =k, aeZ’,. . @

T
We call the points {x AL }u- , the B—net points. The mapping b defined by

bhx =6, ani, laf =

ar

is called the B—net representation of p(x) with respect to the triangle <.

Associated with the triangulation A\, the space Sy o of bivariate splmes on A is de-
fined by (1.1). Pa.mcularly, S‘," . is the space of continuous spline functions. Now we con-
sider the B—net representatlon of a bivariate spline in the space Ska- Let

P= Pt(A): = {x“ ! [a_l = k}.

L7

where x,, is given by (2.1).
For .\‘ES:_A is agreement with a polynomial p €II, on each t, e/\, wehave

p(x)=2 b,
o=k

Therefore, a mapping b, on P can be defined by
' pea e, SO el =k, t €A. : 2.2)

&%), i ¢

The mapping b, is called the B—net répreseixtatibn of the spline function s. Clearly, b, is
well deﬁned provided s is continuous. In this way, we obtain a one—to —one correspon-

dence between seS LA and its B—net representation b,. So, for any :eS ra WVe have the
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following expression

sx)= Y b (x )B, (x), x€T, Sl

el = k
As usual, the space of all real funcnons deﬁned on P will be denoted by RY. Then

S‘:A is isomorphic to R’. Therefore, we have

dim(s? ) = dim(R") = 1P| : 2.3)

We are going to introduce the smoothness conditions of splines in terms of B—net rep-
resentation. First of all, we consider the case that two triangles have only one vertex in
common. We need the followmg lemma (see[4],(8]) .

Lemma 2.1. Let z={v +Cv +L.¥ ,C +C +{, =0. For feShA,b,is the

B—net representation of f. Then

(D) fix)= ( ( )b(x",))ﬁq( R R Mt
H-k-r De=r

for all 05 r< u, where az,BeZ 25 and D,f denotes the derivative ‘of fin the direction of the

vector z.
E e
l Y e i 3 il
e * X RN 2 A .
. . d - p 3 Y 2 o N " .
1 . @ ° ’/ @ . * ‘
?» ° 5 * . . e wait ' 4 . » e
. - & . . .
* : » . o3 S . - .
'y i 5 o . " . ; ’/. . . e s °*
: ® . rigs o =SS 2 . . .
Gk . ot ® e ¥ S PGS
‘ . . " o 1 * 3 . .
? . - * 4 . ¥ ° * & * % *. :’\‘\: i L x . g 3 : > .
e ° L] * - - ° L4
' AT - shs
i . i . > = M e g 4 \_‘\ * : - - = . X . I
?. ! - - 5 - o3 * W, 5 L 5 @ 3 . o i
* . £ * ) e . e ¥ i
SIS iy r/'/ . . ® 5 . : l.
T » 4 »” - . e 28 » . °
- Y - . H
l W i ~ - . .
= . L]
‘\\ o !

£

Fig.2 The points (*) in the set P(v,u)
(for k=14,4=4)
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Assume that 7 = {v,u,w) and ¢/={v,u’,w’'} are two triangles with exactly one vertex
y in common (see Figure 2), and that x =a—°v+a—‘-u¥:‘—z-w aﬁd x =f1v+a—‘u’
g MSETER J W1 e k Lo k k

«
+—>w’ are B—net points in t and 7’ respectively. Let P(v,u) be the collection of those

[» 4 [+ 4 x
B—net points in t\UJ t/ whose barycentric coordinates (70-’7‘ ,f—) satisfy —ko— >1 —;c—‘

. Using Lemma 2.1 one easily gets
Lemma 2.2 Let [eSZ(rUt’) and bfx,.), b{x,y) be the Béier coordinates of f with re-

spect to 1,7’ réspectively. Then feC"(t\Jt") ifand only if the equation

r r
Z(pptrm= E (P o

holds for all 0< r< p and for any directio;! z such that there is a number t, v + tzerUr’.
Where a = (k—r,0,0) and BeZi :

Therefore, b ,(x.' f,) and b ,(x“) can be determined each other. In other words,
there is an invertible matrix A such that

b, ), = Al )}, (2.4)

agaP(va)

It is essential to represent C*—continuous conditions in terms of B—net representation,
if spline function f is defined over two triangles ‘vith one common edge. G. Farin solved
this problem in 2—dimensional case. de Boor ¥ and Jia!® considered the general
n—-dimensional case. Here we state Jia’s succinct result for n= 2(see [8]). :

Let t={v"»'v’},7={"" @} be two triangles with common edge '), S de
note the area of triangle t, and S, denote the area of the striangle with vertices of t but Vs
replaced by w,i=0,1,2.

Theorem 2.1. Suppose that spline ﬁmc'u‘on fis defined on t\U1’ by

fl=Xb B, [l = _2_:*1;“,3“.

-k

Then fe C"(rUr’) if and only if, for alIﬂpositive integersr<pand a = (a ,a, ,O)EZ’+ Jol =k

o= Z(Gen(3)(3) ()" @9

—',

b

M= r

where &= (0,0,1).
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Associated with a triangulation A, E, is the set of interior edges of A.Let e = v’y 23
€E, be the common edge of two triangles t = {(*»' v’ and v = {+",v' w}. For inte-

gers r, :l<r<y, 0<j<k—r, wedeﬁnethefuncuonalsonR' by
S‘v 8, . \3, :
a+re’ ( ( )(X¢+“ (E—) (?/ » (2.6)
where a = (k—f-.,0) | - |

It is easy to see that the support of the functional Ay, isincluded in a diamond do-

main with diagonal fine [(k ’)‘; + v, (k i—r)vk+(1+r)v ] and vertices

% gl -.A

A,,b=>bx

Xy and x “‘ (seeFlgure3)

a+re T

Given eeE , we use/\ to denote thesetof all linear functxonals {A e 1<r<p 0
<j<k—r} Let »
AL =(beR"; 1Lb for all ieA,}.

Then Theorem 2.1 shows that a spline:functional feC *(«lJ) ifand only if .z o

N re

e

e

Fig.3 Support(*)ofi esalfor k=14, u= 4)

§3 The _diménstion of .S“k‘.A

In thic ection we are going to oreve the dimension formula for the spaces Sta, k2
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As usual, [x] denotes the integer part of the real number x. A'B—net point x,, on the
triangle t={v",»' v’} issaid to be of type [ with respect to the vertex v ifit belongs to

the set %
1 : N

{x“ - ;(aovo + alvl + azvz); aezi, x| =k, @ 2 k—pu— [g]} !
For every veV, we use Xf to denote the collection of all the points of type 7 on the parti-
tion A with respect to the vertex v. If the B—net point x,, is in the set

. 3 P 2y : P R s ¥ o “ :

; {x“. xeZ Ial‘-l k, Qsaz S U, i + 1 f“o' _¢,,:,<k,—# —[5]}..

then we call it a point of type Ifon t with respect to edge. [vo,v!]. For every edge ecE, X 3
denotes the set of all points of type II on A with respect to the edge e. Let

X ,-{x‘.cx);ﬁ-l j=0,12}- R TTET o

and call'it the set of all points of type /¥on t. Besides the points of type 7, I7-and IV, the

remaining B—net points on t are called points of type III. Clearly, the set of points of type

IIT consists of three parts. Th}g parts nears tq the vertex v on tis denotgc_i by':l"_f”(g), and let
G S i’:"'-" U ‘X:"(v),“" . 'X' '-'X:U"X:"-' R -4"-('3..0)

el

Where A ={tel,v isa verie'x_ of t} (see Fig: 4).

L 20 2R AR 2R 3R B AR AR
A A A o o o o A A A
A A A A o o o A A AL
A A A A A o o A A AMADA
A A A A AA - AAALAAAMDA
A A A A &L AAAAAAMDAAMDS
A A A A AALAA®AALAALAAN
A A A A A AA S P* A ALAAADLDDSL
® A A A OM»AA PSP A ALAALAAALAASYS

* * A A A A A DS P P A ALAAANYDYS
* % & o o o o A A A A A o e o R N
* ke e o A A AAAAL G RN
* Rk k ® ke e A AAAAAAGC Y RERENY
* R R R e AAAAAAAALA RN E AN
* kR A AAAAALAALAALAREE R AR

* ® Rk k R A A A A AL AAAL YR RN R A NN
* kR R R R A AL AAAALAALARYR YRR YRR

"Fig.4 Classification of B—net points (k=27, u=7)
A *; I A III: =5 IV: +)
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Forevery ecE , recall the definition of /\, insection2.weset - .

Ak AL bl ,eeE 0<j<k—1, 1<r<ul

At ={beR"; alb for all deA} G
- -span(/\) | . ,
We denote by d(v) the number of edges attached to vertex v If Q cﬂ denotes the

standard cell on A with respect to the vertex v, then we deﬁne

d(v): =the number of components of 0 \{v}.

g 4

Additionally, we use c+1 to denote the number of components of Y o
Having above preparation, we are ready to consider the dimension of S; . As men-

tioned before, any continuous spline feS _is associated with its B—net representation -

b eR Accordmg to Theorem 2:4 and Lemma 2.2, ‘we can conclude that feS - if and

only if, for every edge ecE & b ‘satisfies’ . 5) and for eirery trertex v with d(v) >1 b
satisfies (2.4) for arbitrary two’ tnangles with vertex v in common . Hence we have

dim(S% ,) = IP| — dim(Q) — (Z.z;.)d., -, , e
where -

d, = 2: (d(v)—l)

uV
:

and ¥, is the set of boundary vemeee deﬁned by (l 2).

Thus our remaining task is to ealculateydlm(Q) To do so, we establish the following
key lemmas. o gt Mt 4

Lemma 3.1. Let P be a lmear space thh ﬁm:e dzmen.non ‘and P" its dual space. Sup-
pose P ;=P are sub:paces of P, and Q ',-:-,Q" ” are .rub.rpaces of P*. Let

A

"P -{J.EP ; J.p-O for any *;‘;el\"',,};."p_-

Sl 2 ; * . “
Then if Py o - B v
1 gl T, BN ™
3

QNP =10} for i=1-N,
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then

aim To,)- Lam@,) (33)

{m]

Proof. It is sufficient to show that Z‘” IQ 3 is a direct sum. Suppose

N
ZqI-O, for ¢q,€0,, i=1,=N.

(=]

We show that ¢,=0 for all i.
If not, then there exists ¢,#0 for some n, such that ¢,= 0 for all i> n. Then by the hy-

pothesis, we have

a=1
9,=—-Xa,eNP/,

=1 I>=

in particular, ¢, eP;L . Note that Q ﬂP;L = {0}, we get g,=0. This contradiction proves

the conchusian.
Lemma3.2. If {4 A} spansQ,and for u ,->-,u_€P, the matrix

(»14,(7'_‘.1))“1404
is nonsingular, then
L
oNP~ ={o}.
Proof. Suppose that ).eQﬂP'L. Then we have
A= ‘-Zla‘l‘,

and A(u ,) =0, j=1,°>*,n. Therefore,

Zd,l,(ul)=0, l= 19‘"1"-
l=

The fact that matrix ('1:(“1))1«./0 is nonsingular implies a,=0, i=0, ===, n. This finishes
the proof.

Let 5 eR” be the function on P= P,(A) defined by
if x=y;

1
=5 wm{’
0.0)=0,,=1 0 otherwise.

d,, is the Kronecker delta notation. Let
- Jh =-spa.n{6‘; xeX } for veV
P, =span{é ; xeX } for eeE,.
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By the definition of X, and X,, we have
X'ﬂX.=¢,;,for_any ecE,, veV. (3.4)

Since k> 3u+ 2, we have

X Nx, =9, for vEY  ©

XX =, for sel ™ 3.5)
Let | |
A, ={le/\; suppic X} J
A, = UeA; GuppdNX, %9}
and ,
Q,=span(A), @, =spana(A,). (3.6)
Then
vees DI SR Qo SRR oo (37)

Note that k2 3u+2, we get from (3.4) and (3.5) that

: Q, f:P;L for any e_eEm veV,
Q, cP'L, for any v ;éi;",} 0, cP‘j' for any e #eé’. (3.8)
From Lemma 3.2 we have also o ‘ .
Q'ﬂP:L = {0}, for‘ any veV. (3.9)

If we arrange the elements of ¥\J E, in an order such that the edges are after the vertices,

then, by Lemma 3.1, once we prove

PENQ. ={0} forall ecE,, (3.10)
wa have iy
dim(Q) = Y dim(Q,) + X dim(Q ). (3.11)

Next we are going to prove .‘(3.1.0). The following result which is essential in proving
(3.10) can be derived from Theorem 10.1 of Karlin ([9],Chapter 8).

Lemma 3.3. Let



e
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P ks e

Al  Z(m=1) 1!

2 B e ek

A =| (n+1) n! 2!

1 1 et |
| 2n—1)! 2n=2)! n |

Then det(A, )%0.

Lemma 3.4. [f k23u+2, then (3 10) is true for any eeE

Proof. Suppose that t={v"»' v’} and v/ ={»° v w} are two triangles with the
edge e = [v ,V ] in common. Then the support of every functional 4.;, is a one—point
subset in /. S, and S, denote the areas of the triangles {w,v',vz_}_ and {v",w,y’},
respectively. We divide thebroof into two cases. :

Casel. Both S, and S, are not zero. .

We use u to denote [(u+l)/2] and lerﬁ [y/2] For 1<m<yp let

X g =X (v )

{x EX 3 a=(k—p—p—m, u+t,_g+m—t) St<p—m+1},

=X (v)
={xueX'; a=(u+t,lé-p—-_;£—m,£+m-—t), I<t<pu—m+1}. (3.12)

and define

=X _[(\e). (3.13)

2u+l
We figure the points of X,,, in Fig.5. Let
P, =span{d_; xeX }, i=12,251+ 1.

and
Ao =12eA; spani(\(P\e)c X }.

For i=1,---,2u, we define /\, inductively
N, ={Ae/\'; J.é_/\, for j>i, and supp i> X, }. (3.14)

So, if denote
Q,=span(A\)), i=12,+-2u+1.

then
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. 68 L4

W+l
g, = X, Qs

l=1

Noticing that k= 3u+2, we get

(3.15)

(suppA )X, =@ for j>i.

Thus

(3.16)

and the set X,, (¢ points)

m

Fig.5 The tips(A) of the support diamonds of A€/

for (1

<m<4; p=17,k=24)

1—[(+1)/2], then

=B+

If weset s :

A =s, 1<i<2+1.

eP’, then

ll
{

are s; elements of /A, , and assume that “1'11 © s
!

i

3

Given i‘ RIDW S

0,forany xeX, ,' one geté the following system of linear equations

from A(d,)

3.17)

while a is a column vector and its transpose

£l

]

L ol

1]

B

o

x

w 8-

2
-
w

w» ~~

2 -
I i
2 3
Los
- l’

m -

s 8

L]

- ..__

3 o

Since S,70 and S0, we get by calculating that

(3.18)

)= Mdet(A"_‘l )

34

set(B
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where Mis a nonzero constant and A',; -is defined as in Lemma 3.3. Hence the system of
 dai | 2 a

linear equations (3.17) has only zero solution. Therefore, we obtain

QlﬂP;L ~ {0}: for " 13"'12‘_‘-

(3.19)
\—0——0——.—.—.—-# - %—'—' __% A S e e L s — Gt
® & 8 ¢ & o © ¢ b ' o & o e © © @ e o o /
: ®Le. 0w @'e e ‘ L] L) e L] L] & e L] L ] L] ‘/l
® ® © o o o .T e e ° o ] e e o o 0/
* e W eSS b e e e e R i
® o o o P @ W e l. ® e e o o e e e J
\ Sie & W ¥ W 9 O 0 W A e el
e ® o o *f? * % A A o o
\o e o o o ? e o o e o,/,l’
N ® e e Q.-T e o e o/-
e P
L] ? @ _l/
. ‘/ 3

Fig.6 The tips (&) of the support of /i and the sets. Xopey (%)
for §4=0, but /\2,,=¢ (k=14,u=4,m= 1,2)

Moreover, the fact that supp4/")(t"\¢) is a one—point set for every ie A Bet implies
e
‘Q!ZTH-l»nPZifl S {0}

(3.20)
Using Lemma 3.1, we get that the sum in the expression

%+l

Q,=XQ,

im]
is a direct sum. Hence, if ¢ an‘eP

plies g=0. So (3.10) is true in this case.
“Case2. §,=0 orS,=0.

,q,€Q,, then ¢,€P . So, (3:19) and (3.20) im-

Without loss of any generahty, we assume So= 0 Then Sl#=0 Nonce that the sets /\
defined by (3.14) are empty when i = 2m m=1 RINT) (see Fig. 6), the proof given above is
still valid in the present situatoin. So we complete the proof

Comblmng (3.2) with (3.11), we ‘have

dlm(S )=le (gl)d (

Y. dim(Q )+ Y dim(Q ))

LR

(3.21)
ve ¥V o-l
Evidently, we have

dim(Q,)=IA | for every eckE,
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dim(Q ) =|A | for every veV,. ; sic (3.293)

For ve Vs let
a:=|A |-dim(Q ). i .. 323)

then a, is nonnegative, and (3.21) can be rewritten as

dim(S} ) = 1X| - A+ ): a, —‘i(‘L”do. ; (3.24)

> -

Now, we just need to- calcu]ate q. Let veV,, Q denotes the standard cell on A with

respect to the vertex v. Set : v. § : S
: X(n') = {x.,‘; ‘.x.,':eg'} :
A@,)={ieR"; suppicXx(@))}.

Note that linear functionals in A (Q,)\ A, are linear independent if we consider the
splines defined on Q,, it follows from (1.3) that

a =dim(S; , (@) - (X(@Q,) - IA@, )l) Sy (e

~ @+ Bd) =y —0 )= @ (k+1)— ku+"“‘ D)a(v)

’([l+l)2([.l+‘2)+a 5 SHNE- s St | G

v

Where 2,8,y and o, are defined as in (1.4). Moreover, we have

|X| = aN — (k + DIE,[—d,,

Al= 3 (e +1=IE,, (3.26)

=1

where N is the number of triangles in the partition A ..If Q is a connected domain, then
Euler’s formula for a planar graph yields dikisds of

N=|E|=|V|+(1—0), i i A3.27)

where c+1 denotes the number of connected components of R’\n Furthermore (3 .27)

" s
can be rewritten as 2

=IE,|- |_'V°|+(1 —,c‘)+“do i . - (327)
where d, is defined as in (3.2). To verify it, one only needs to consider the graph G
=(V,.E,) which is composed of boundary vertices ¥, and boundary edges E, of parti-
tion A. Recall an elementary theorem in graph theory ([6], Theorem 2.1),
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5 g ot T Z d(V) 2lE Iv

eV,

where d(v) is the degree of vertex v in graph G. We have

T 23(v) = 2IE,|.

eV,

Substitute it into (3.27), we get

N=IE||=V |+ -+ ¥ dv)—V,|.
i.e., (3.27) holds.
Combine (3.25), (3.26) and (3.27’) with (3.24), it follows

_ dim(S" )=a(l—c)+a+yd, -V o)+ BIE .

If we write

D=y (dv)-1). - (3.28)

Then we obtain the following main result s 3 : i
Theorem 3.1. Suppose A\ isa trwnglutxon ofQ. Let c-Hdenote the number of connected

components of R°\Q, and k> 3u+2. Then the dzmermon of space S 5 is
dim(S* )=a(1—c)+ﬂl£‘ |+7D+a (3.29)

1

where @ ﬂ,y and ¢ and deﬁned by (1. 6) and (1.4), wlule D is given by (3 28)

From Theorem 3.1, one gets immediately the following:

Corollary 3.1. IfQ is a polygon, and k> 3u+2, then the equality holds in (1.4) of Theo-
rem S,. Moreover, when Q is a complex connected domain, (1.4) may not be true.

In fact, if Q is a polygon, then ¢ =0, dy=0, hence (3.29) becomes

dlm(S )=a+BIE, PV | +e.

If we choose a triangulation for a not simply connected domain, such that ¢> 0, and do— i
then (3.29) shows _ ' :

dim(S* )<a+ﬁl£ I—-yIV |+ 0.

§4.  Basis for the space S},

In this section, we are going to construct a locally supported basis for the space Ska in
the case k= 3u+2. Furthermore, the basis functions constructed are minimally supported.
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We say Q is a standard cell if it is triagulated with precisely one interior vertex v such
that every boundary vertex is connected to v by a interior edge. We state the definition of
minimally supported basis as following (see [2])- e

Definition 4.1. A basis of Sk o is called a mlmmally supported bas:s, if the support of
each spline in the basisis a subset of a standard cell.

As before, we use P =P () to denote the set of all B—net points on partition A, for

seSk A’ is its B—net representation. Since the B—net mapping b gives a one—to—one

correspondence between A+ and Sk 4, it suffices to construct a minimally supported basis

for /. We need the following definition.
Definition 4.2. A set X< P(D)is said to be a determining set for Sia if

seShi: 4,(6,)=0,"" xe X obim0

A determining set X is 2 minimal determining set if tHere exists no determining set with

fewer elements. ] .
Clearly, a set X< P(A) is a minimal determining set for Sk if and only if X is a de-

e

termining set of S;5 and |X]= dim(SLp). - 5o ﬂ e
To find a minimal determining set X for S, A, WE concerned with the B—net pointset
X, defined by (3.0) first. Recall the definition of A, and @, by 3. 6), we deﬁne T B e o8

BT

g R B R »,. _-.... . Y ’Supp(/\ )

P =span{5 eR e }

ye. -

where m = |X |. because Q,isa lmear space of ﬁmte dlmensmn we choose 4, ---,,1_ eN,
such that they form a basis for Q, Then for any beéP b= (b |,~-- b ) B

J. (b)= : for i= 1 -"‘,‘,_
or say

Zjli”bi =0, i=1lrn (4.1
where 4, (). e The coefficients matrix of (4.1) are full row rank, therefore, there

exists a subset {1 o} of set {1,-+=,m} such that

A:=|det
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!—l By 4 u, :
' - 53 ,121.
=MaAX el D0 : ;
i lnll ese )‘u. J

a:maxIA‘

Using Gram'’s rule, we solve the system of linear equations (4.1), and obtain

s ¥ 16 l——< Sen s (4.2)

iwa fopt
le |, =a [ ™

Correspondmg to {b }1 o “the B—net pomtset {x”}l , isdenoted by Xo, and let
R

‘For every interior edge e, X, denotes the set of B—net points of type I7 on the neigh-
boring triangles sharing e, Let & e

- E+!

f'='X‘\‘U X‘.)

iml.,

LA AR

where X' (i=1,---27i + 1) are defined by (3.12) and (3.13).
Now we are ready to state the follawmg theorem
Theorem 4.1. Let A} be the set

—(UX JUU ¥, )U(X\(U ,X U

veV ek,

Theri A isa mxrumal determmmg set for 3
In fact accordmg to the proof of Theorem 3 l we have

|4}] =dim(S", ).

On the other hand, if we arrange the elements of ¥\JE, in an order such that the edges are

after the vertices, then for /eR’, we can write the smoothness conditions, b fe/\_J'

the form of
Ab,=0, ; v : (4.3)
b e
i PR |
R

¢ ecE,
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Furthermore, (4.3) can be rewritten as
Ab .= Bb,,

where b, =(b,(xu)), arr By =0 (x, s ey and A is a full column rank block
lower—triangular matrix. Therefore, A} is 2 minimal determining set.

Denote

» d
At’{x }:-1' T

where d = IA:I-dim(S ). Then we deﬁne b, eR Pli=1,2,-+-,d) by
b (x )=6 for % eA:i

On the other points x _EP,b (x .) is determined by. the C*~—continuous conditions (4.3)..
Clearly, bli=1.2,>,d) is umquely determined in this way. Let 5, be the spline func-

tions in S 45 such that their B—net rep;esentatlons are b E(l =1,2,°**,d). Then we have
Theorem 4.2. {s ! }:_x is a minimally supported basis for the spaces- Sy A.

Proof. We only need to show that {b :}:‘-1_. is-a basis for the space A< and that for

each b, it is minimally supported. Obviousli', b, gaﬁsﬁes the smoothness conditions and

{b} is linear independent. In view of that fact: i} .4 senciooms o
R o \'"?":‘- £ “4' - 4
dim(AY) =dim(S} Y =d,

1.

we know that {b },‘ , is a basis of AA. Finally, we are going to show that b, is minimally
supported. There are three possible cases. ‘ : :

If x,eX ,ie x isa point of type / or type I of vertex ¥, then the smoothness
condmons (2. 7) can be accommodated by assxgnmg appropnate values to the B—net values
b(x ) in X, and in X,,(v), which is defined Sy (3 12), for each ‘interior edge e emanating
from v. Thus the support of such a basis functions is included in Q, the standard cell with

interior vertex v.
If x, X, ,ecE , then the smoothness conditions (2 7) can be accommodated by as-

signing appropnate values to b (x ) inX,. In this case, its support is included in the tri-

angles containing the relevant edge e.
If x eX, ,e€E , or x, is a point oftype IV, then we can choose b (x _)=0 for all

X, #X, Th:s means the support of such basis function is included in the tnangles whlch

contams the B—net point x,. Thus we are done.
Remarks 1.We have not been able to extend the method of proof used here to lower

degree spline spaces, for example to S* (A). But we conjecture that the dimension
Ju+1

formula (3.29) is true also. In the case u=1, k=4, the dimension of Si(A\) has been settled
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mn [3]. For 4 =2, the question is still open.
2. de Boor [5] proved that the space Sk has the full approximation order r= k+1 us-
mg the duality of the space Sg, Wwhenever k2> 3u+2. We considered this question in [7] by

constructing an approximation scheme using the local basis of § :A, k > 3u + 2 which was

constructed in section 4
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