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Abstract

A method for compressing surfaces associated with C' cubic splines defined on triangulated quadr-
angulations is described. The method makes use of hierarchical bases, and does not require the
construction of wavelets.
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1. Introduction

We consider surfaces which are defined as the graphs of real-valued functions
defined on a domain Q C R?. In particular, we deal with C' cubic splines defined
on triangulations obtained from convex quadrangulations by drawing both
diagonals in each quadrilateral. The aim is to develop a compression scheme for
such spline surfaces which does not require the construction of wavelets.

Our motivation for trying this approach is the fact that except for certain box
spline spaces defined on very special partitions, it is very difficult to construct
wavelets corresponding to bivariate splines of smoothness C! or greater, see
Remarks 8.1 and 8.2. Indeed, even the case of C° linear splines on general tri-
angulations is unexpectedly complicated, see [4], [8], [9] and references therein.

The key to our method is to work with C! cubic spline spaces which can be
parameterized locally using the well-known FVS-macro-elements, see [1], [10],
[11], [17]. The algorithms are based on constructing hierarchical bases for certain
nested sequences of such spline spaces. These hierarchical bases have been used as
tools for solving boundary-value problems [3].

The method is easy to implement and is computationally efficient since it is not
necessary to keep track of basis functions, and does not require solving any systems
of equations in either the decomposition or reconstruction phases. Test results
show that it can achieve good approximations with high compression rates.
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The paper is organized as follows. In Section 2 we briefly review the idea of
hierarchical bases and discuss their usefulness for compression purposes. Sec-
tion 3 reviews basic facts about C! cubic spline spaces on triangulated quadran-
gulations, while Section 4 describes the refinement process used to create
sequences of nested spline spaces. Section 5 is devoted to the construction of
hierarchical bases for the resulting spline spaces, while Section 6 goes into the
details of the compression algorithm. Numerical examples can be found in Sec-
tion 7. We conclude the paper with remarks and references.

2. Hierarchical Bases

In this section we briefly review the idea of hierarchical bases and discuss their
usefulness for compression purposes. Suppose

SoCSFL 1 CSrC---CYYy

is a nested sequence of finite dimensional spaces of real-valued functions. Then a
set of functions

¢
= KB
k=0
is said to be a hierarchical basis for %, provided
m
B = U{Bi{}:’il
k=0

is a basis for &, foreach m = 0,1,...,¢. Then every s € &, can be written in the
form

14
s=YD B, (1)

and the partial sums
k_ nm
Sg = Z Z B! (2)

m=0 i=1

are functions in the spaces %, for each 0 < k < /. The expansion (1) is particu-
larly useful when

ls —soll > lls —s1]| > - > |ls — se1]], (3)

since in this case the sequence of splines s, s, . - ., $¢ can be regarded as better and
better approximations of s. Then if we only need an approximation to s, it is
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enough to know only part of the coefficients. For example, for the coarsest
approximation sy, it suffices to know only the coefficients {c?}°,. Thus, in this
case the representation (1) is well-suited for progressive transmission of coeffi-
cients.

The expansion (1) can also be used for compression provided that the basis func-
tions are stable in the sense that small changes in the size of coefficients in (1) lead to
small changes in the size of ||s||. To describe a compressed approximation of s, we
can store (or transmit) only coefficients which are larger than some prescribed
threshold. The ratio of retained coefficients to original coefficients will then describe
the compression rate. (This ratio will not correspond to the true compression rate,
since we would still need some way of describing which coefficients have been
retained, but this can be done with standard coding techniques, see Remark 8.4).

3. C! Cubic Splines on a Triangulated Quadrangulation

Suppose 7" := {v;}}_, is a set of points in R?. Then (cf. [11], [12]), a set ¢ of
quadrilaterals with vertices 7~ is called a quadrangulation of Q provided 1) Q is
the union of the quadrilaterals in <}, and 2) the intersection of any two quadri-
laterals in < is either empty, a common vertex, or a common edge. We focus on
quadrangulations where the largest angle in any quadrilateral is less than 7. Given
such a quadrangulation, let ¢ be the triangulation which is obtained by drawing
in both diagonals in each quadrilateral. We write & for the set of edges of <,
where we assume each edge e has been assigned a specific orientation. Associated
with &, let

FNP) = {s€C(Q):5], €25, all T € $},

be the corresponding space of C' cubic splines, where 2; is the space of cubic
bivariate polynomials.

It is well known (cf. [11]) that
n:=dim ¥}($) =3V +E,

where V and E are the number of vertices and edges of <>, respectively. We now
describe a basis for #}(4). For each v € 77, let Z,, 2% and 2/ be the point-eval-
uation functionals defined on the space C!(Q) by

Lps = s(v), Ays = Dys(v), 738 = Dys(v). 4)
For each oriented edge e € &, let y, be the linear functional such that

VeS = Des(ue), (5)

where u, is the center of e and D, is the directional derivative associated with a
unit vector r, which is perpendicular to e. Then it is well known (cf. [10], [11], [17])
that the set of linear functionals
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A=Yy = s 23 v U e

ve?” ecé

is a minimal determining set for .#}(4), i.e., each spline s € &}(4) is uniquely
determined by the values {4;s}"_,. This can also be stated as follows:

Lemma 1. Given any function f € C'(Q), there is a unique spline sy € %3(4)
satisfying

1) sp(v) = f(v) for all ve 77,
2) Dysy(v) = Dxf (v) and Dysy(v) = D,f (v) for all ve 7,
3) Desy(ue) = Def (ue) for all e € &.

The fact that A is a minimal determining set for .#’}(4>) means that to store a given
spline s € V%(@) in a computer, we need only store the n-vector (4;s, .. ., 4,s). The
entries of this vector are just values of s or its first derivatives at certain points.
The process of evaluating s at any given point is greatly simplified by the fact that
the above data actually determines s locally. More precisely, if Q is a quadrilateral
of ¢, then s is uniquely determined on O by the values s(v), D,s(v), Ds(v) at the
four vertices of O, coupled with the values of D,s(u.) for the four edges of Q. For
especially efficient evaluation on Q, these 16 pieces of data can be used to compute
the corresponding Bézier net for s, after which the standard de Casteljau algo-
rithm can be applied to find values or derivatives of s (see [3], [11]).

The following error bound for the Hermite interpolating spline of Lemma 1 can
be established by standard methods using the Bramble-Hilbert lemma. Let / be
the diameter of the largest triangle in ¢, and let 7" (Q) be the usual Sobolev space
with semi-norm [f1,, .

Lemma 2. Fix2 <m<4and1 < p < co. Then there exists a constant C depending
only on m and the smallest angle in & such that

IDDE(S = sp)ll, < CH" " H(f

Jor every f € W(Q) and all 0 < v+ u < m.

4. A Refinement Scheme

In this section we discuss a natural scheme for refining a given quadrangulation
$o and its associated triangulation ¢ to produce nested sequences

Qo CO1COrC--Cy (6)

and

PoC 91 CO2C - C (7)
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We will use these in the next section to define nested sequences of cubic spline
spaces.

Algorithm 1. Let & be the triangulation associated with a quadrangulation {,. For
each Q in ),

1) let vg be the point where the two diagonals of Q intersect,
2) conmect the point vy to the centers wg 1, ..., wo4 of the edges of O,
3) connect wo; to wo i1 for i =1,...,4, where we identify wos := wg1.

It is clear that Algorithm 1 splits each quadrilateral in {, into four subquadri-
laterals and each triangle in ¢ into four subtriangles, see Fig. 1. This process can
be repeated as often as desired to produce the nested sequences in (6) and (7). Let
7" be the set of vertices of the initial quadrangulation (. We write ¥ for the set
of points at intersections of diagonals arising in step 1 of the algorithm, and 77
for the set of points at midpoints of edges arising in step 2 of the algorithm. Then
applying the algorithm repeatedly, we get analogous sets of points 7™ |, and

"¢ _,, and it is easy to see that the set of vertices of <, is just

Vo=V e U UP

forall 1 <m </.

Let V,,, E,,, and Q,, denote the number of vertices, edges, and quadrilaterals in the
quadrangulation <, obtained after performing m steps of Algorithm 1 on an
initial quadrangulation .

Lemma 3. For all m > 0,

Qm = 4mQ07
E,=2"FEy+ 2(4m — 2m)Q0,

V= Vo + (2" — 1)Eg + (4" = 2" + 1)Q,.

wWQ,4

R

wQ,2

2\

Fig. 1. One step of the refinement algorithm on a single quadrilateral
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Proof. The first formula follows immediately from Q,, = 40,,_,. For E,, we have
the difference equation E, = 2E,,_| + 40,,_1, and solving it leads to the stated
formula for E,,. Finally, to get the third formula we solve the difference equation
Vm = mel +Emfl + mel- O

For comparison purposes, in Table 1 we give the numbers Q,,E, and V;, for
m=0,...,8, assuming that we start with a single quadrilateral. The table also
shows the dimension d,, of yé(@,n). We conclude this section with a result on the
stability of the refinement process. Let 6,, be the smallest angle in the triangula-
tion $,,.

Theorem 1. There exists a constant 0 < xk < 1 depending only on 0y such that
0,, > 10y, all m > 0. (8)

Proof. The proof of (8) for m = 1 is straightforward. For m > 1 the result follows
from the observation (see the proof of Proposition 5.2 in [3]) that 0,, = 6, for all
m> 1. Il

5. A Nested Sequence of C' Cubic Splines

In this section we work with the nested sequence of C! cubic spline spaces
S3(90) C F3($1) C - C F3(90)

corresponding to (6) and (7). Our aim is to describe a hierarchical basis for

F(e).

Foreach 0 <m </, let 77, and &, denote the sets of vertices and (oriented) edges
of the m-th quadrangulation ¢, in the nested sequence (6). As in Section 4, let
", be the set of diagonal crossing points of the quadrilaterals of <,,. For each
vertex v of {y, let 4,, A7, A be the linear functionals defined in (4). If e is any edge
of a quadrilateral, we write u, for its midpoint. For each edge e of a quadrilateral,
let 7, be the linear functional defined in (5), and let §, be the linear functional

defined by

Table 1. The combinatorics of 5’;(615,,1) form=0,...,8

m Om En Vin dy

0 1 4 4 16
1 4 12 9 39
2 16 40 25 115
3 64 144 81 387
4 256 544 289 1411
5 1024 2112 1089 5379
6 4096 8320 4225 20995
7 16384 33024 16641 82947
8 65536 131584 66049 329731
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78 = Des(u,),
where D, is the directional derivative associated with the unit vector pointing in
the direction of e.
We now construct a special minimal determining set for (4. Let
10 ;
Ao = {4}, = U {4, 245 24} U U Ve
Ve ecéy

and for each 1 <k </, set

Te=00 0= U {2 230 U Qs U U v

ve 1/; 1 e ecéy

Theorem 2. For each 0 < m < {, the set of linear functionals

Am = AO @] LmJ Fk
k=1

forms a minimal determining set for yé(Q}m).

Proof. It is easy to see that setting the values {/s},., is equivalent to setting

U {Aps, s, Ast U U P,S. 9)

vEY ecéy

By the results of Section 3, these values uniquely determine a spline s € & é (&) O

We now construct a hierarchical basis for yé(é}g). For each 1 <i < ny, let B? be
the unique spline in %’}(4) such that

AB) =6y, j=1,...,n. (10)

In addition, for each 1 < m < ¢and each 1 <i <n,, let B be the unique spline in
y;(ébm) such that

i.;nB;n:éijv Jj= lauwnma

EBr=0, j=1,...m, k=1,...m-L (11)

Theorem 3. For each 0 < m < {, the set of splines

m  ng

=Uuzn

k=0i=

forms a basis for #}(4,,).
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Proof. By construction, the splines in 4, lic in #’}(4,,) and are linearly inde-
pendent. Then the result follows from the fact that the cardinality of 4,, is equal
to ny + ny + - - - + n,,, which is the cardinality of the minimal determining set A,,

for y;(@,n). O

Theorem 3 shows that 4, is a hierarchical basis for .& ;(%[}4), and thus every spline
s € #4(¥¢) has a unique hierarchical representation

L np

s=Y_Y B! (12)

m=0 i=1

We now show that the basis functions in Theorem 3 are local and stable. To make
this more precise, given any vertex v of quadrangulation <,,, let star,(v) be the
union of the (at most four) quadrilaterals of <»,, which share the vertex v. Simi-
larly, if u, is the midpoint of some edge of <{>,,, let nhb,,(e) be the union of the (at
most two) quadrilaterals of <»,, which share the edge e. Let AE,?) and Af,p be the
subsets of those linear functionals in A,, which involve function evaluation and
derivative evaluation, respectively.

Theorem 4. For each 0 < m < {, the supports and sizes of B}' satisfy

1) suppB!" C star,,(v) if A" involves evaluation at a vertex v of
2) suppB! C nhb,,(e) if ié” involves evaluation at u, for some edge e of <,
3) 1IBY |l < 1if 7" € AL

4) ||B ||l o < Huyi if A € A,(nl), where H,,; is the maximal diameter of the triangles
contained in supp BY'.

Proof. The claim about the supports of the B! follows immediately from the fact
(cf. the discussion in Section 3) that on each quadrilateral Q of <,, a spline is
determined by the values at the four vertices of Q and at the midpoints of the four
sides of Q. Now concerning the sizes of these basis functions, in case 3), it is easy
to see that the Bézier coefficients of B! on any subtriangles of ¢,, are bounded by
1. This implies ||B"||, < 1. When 1" corresponds to a derivative, the Bézier
coefficients on any subtriangle 7 of ¢,, are bounded by the diameter of T, and
|B!|| o < Hpn,; follows. O

Properties 1) and 2) of Theorem 4 insure that the basis functions in (12) are local.
Combining these with properties 3) and 4) of the basis, we can now show that it is
also stable in the sense that if s has small coefficients, then ||s|| ., is also small.

Theorem 5. Suppose s € & é(él}g) is a spline whose coefficients satisfy

&, ifim e AY

m )

75| < .
if 2 e AN,

£
16¢H,,

where H,, is the maximum of the H,,; appearing in Theorem 4. Then ||s||, < ¢.
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Proof. By the support properties of the basis, it follows that for any quadrilateral
Q0 € $y, at most 164 basis functions have support containing Q. The claim now
follows from statements 3) and 4) of Theorem 4. O

6. Compression

In view of the discussion in Section 3, a spline s € & é(él}g) is uniquely determined
by the values

U {s(v), Dxs(v), Dys(v)} U U D.s(u,). (13)

VEY ecéy

By the results of the previous section, s is also uniquely determined by the coef-
ficients appearing in the expansion (12). As we shall see below, generally many of
these coefficients will be small, and we can replace them by zero to define a spline §
which has fewer nonzero coefficients but is still close to s. This is the basis of our
compression method.

In analogy with standard wavelet terminology, we refer to the process of com-
puting the coefficients in (12) from the values (13) as decomposition, and the
reverse process of computing the values (13) from the coefficients as reconstruc-
tion. The following theorem is the basis for a decomposition algorithm.

Theorem 6. The coefficients in (12) are given by

c?:/l?s, i=1,...,n (14)
and
=208 — Sm—1)s i=1,....np,m=1,... 4, (15)
where
m—1 n
Sm—1 1= Zci‘Bi‘ (16)
k=0 i=1

Proof. The claim follows immediately from the duality properties (10) and (11) of
the hierarchical basis. O

Theorem 6 can easily be turned into an algorithm for computing the coefficients
in (12).

Algorithm 2. (Decomposition)

1) Use (14) to compute {c)}12| from {8,758, 25} ey UL7eS}ecs, -
2y Form=1,...,¢,
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a) Form the spline s,,_; as in (16),
b) Compute {c"}i", as in (15).

For the purposes of compression, we now apply Theorem 4 to describe a thres-
holding strategy.

Algorithm 3. (Thresholding)

1) Choose e.
2) For eachm=1,... ¢,

a) Drop the coefficient corresponding to 1 € AE,?) if it is smaller than e.
b) Drop the coefficient corresponding to ;' € Agy if it is smaller than 2"e¢.

The decomposition algorithm will give good compression rates when the expan-
sion (12) contains many small coefficients. In view of (15), the size of the coeffi-
cients ¢} depend on the size of s — s,,_; and its first derivatives. In this connection
we have the following result.

Theorem 7. Given f € W;(Q) with 1 <p<oo, suppose s€ S &) satisfies
Af’s = Xff', i=1,....np. Then for all 1 <m </,

||S — Sm—1 Hp S C1h4 ‘.f|4,p~ (17)

m—1
MOV@OV@V, fOl‘ any unit vector u,
1Du(s = sm-1)ll, < Calip_y1f g ps (18)

where D, is the directional derivative corresponding to u. Here h,,_y is the mesh size
of $,_1, Le., the diameter of the largest triangle in $,,_,. The constants C; and C,
depend only on { and the smallest angle 0y in §.

Proof. By Lemma 2,

||f - Sk”p S Ch2|f|4,p7

forall 1 <k < /. Then (17) follows with C; = 2C from the triangle inequality. The
proof of the second inequality is similar. O

This result implies that if s interpolates a function in VI;“(Q), then the coeffi-
cients at level m corresponding to A" € A,((O) will be approximately 1/16 as
large as the analogous coefficients at level m — 1. Similarly, the coefficients at
level m corresponding to A" € AE,:) will be approximately 1/8 as large as the
analogous coefficients at level m — 1. This observation insures that at higher
levels, many coefficients should be small and hence can be removed in the
thresholding step.
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7. Numerical Examples

In this section we present some examples to illustrate the performance of the
compression scheme. In all cases we choose < as the quadrangulation consisting
of the single quadrilateral Q:=[0,1] x [0,1]. For each test function f and
approximating spline s, we measure both the maximum norm e, := ||f — s|| and
the average {>-norm e; := ||/ — s]|,.

As a first test function, we take the standard Franke function

3 02> (99-2)2 Ox+D2 _ Oy+D)
7 v

fitwy) =5 e
1 o2 w32 1 2 2
L i _e*(9x*4> —(9-7)
2 5

shown in Fig. 2. Figure 3(a) shows the result of interpolating f; using a spline s
corresponding to level ¢ = 1. This spline has 39 coefficients and gives errors of
€0 = .25 and e; = .00625. Figure 3(b) shows the spline §¢ which corresponds to
interpolating f; with a spline s¢ at level 6, and then applying the compression
algorithm with & = .02. Although s¢ has 20,995 coefficients, after compression the
spline §¢ has only 37 coefficients, which corresponds to a compression ratio of 567
to 1. The error bounds for the compressed surface §g are e, =.099 and
e; = .0008. Note that although §¢ has fewer coefficients than s;, it does a much
better job of approximating f; and capturing its shape. Both s, and § should be
compared with the compressed spline approximations of f; obtained in [8] which
are based on C? linear splines. Our surfaces are much smoother since they utilize
C' cubic splines.

As a second test function we take

2 2 2
e*’o/(’o*”) r<ry
X,y) = ’ o
f2(x.) {0, otherwise,

where

rimr(ny) = (x— 5 + (v — .5

Fig. 2. The function f;
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(@ (b)

Fig. 3. The splines s; and §¢ fitting f;

and ro = 1/128, see Fig 4. Figure 5(a) shows the result of interpolating /> using a
spline g3 corresponding to level ¢ = 3. This spline has 387 coefficients and gives
errors of ey, =.117 and e, = .000147. Figure 5(b) shows the spline g which
corresponds to interpolating f, with a spline g¢ at level 6, and then applying the
compression algorithm with ¢ = .0023. The spline g¢ has 20,995 coefficients, but
after compression we get g, with only 385 coefficients. The error bounds for the
compressed surface g are eo, = .0074 and e, = .000004. Note that g3 and g, have
essentially the same number of coefficients, but gs does a much better job of
approximating f> and capturing its shape.

8. Remarks

Remark 8.1. The classical way to create multi-resolution schemes is to work with
a nested sequence of spaces ¥y C &) C --- C ¥y whose complement spaces
Sm© S -1 can also be conveniently parameterized. Bases for these complement
spaces are generally called (pre)-wavelets. While this approach works very well for
univariate and tensor-product spline spaces, it becomes quite complicated for
bivariate spline spaces built on more general triangulations. Even the case of C°

Fig. 4. The surface corresponding to f>
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(d)

Fig. 5. The splines g3 and g fitting f>

linear splines is very complicated, see [8],[9] and references therein. Except for box
spline spaces (see the following remark), nothing is known for spline spaces with
higher order smoothness.

Remark 8.2. Multiresolution schemes have been created for certain box-spline
spaces, see e.g. [5], [6], [16]. Surface compression using C?> quadratic wavelets was
discussed in [5], see also [6].

Remark 8.3. Hierarchical bases are of importance in several areas of mathe-
matics, and in particular in multi-level methods for solving boundary-value
problems, see [3], [13], [14], [15], and [18].

Remark 8.4. The compression ratios reported in Section 7 are raw compression
ratios. To actually compress a file, we of course have to code the information to
show which coeflicients have not been thresholded out. This can be done using
standard coding techniques. Taking account of this extra overhead leads to lower
actual compression ratios.

Remark 8.5. The computation of coefficients of a spline with a hierarchical
expansion (12) discussed in Theorem 6 can be regarded as an example of a Faber
interpolation scheme, see [7] and also [2]. Indeed, this expansion corresponds to
writing the Hermite interpolating spline s € .% é(@z) in the telescoping form
s =150+ (s1 —80) + -+ (s —s¢—1), where the s; are given by (16). The spline s; is
obtained by interpolating s;. .
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