
Surface Compression Using a Space of C1 Cubic Splines

with a Hierarchical Basis

D. Hong, Tennessee and L. L. Schumaker, Nashville

Received February 28, 2003; revised November 17, 2003
Published online: March 8, 2004

� Springer-Verlag 2004

Abstract

A method for compressing surfaces associated with C1 cubic splines defined on triangulated quadr-
angulations is described. The method makes use of hierarchical bases, and does not require the
construction of wavelets.
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1. Introduction

We consider surfaces which are defined as the graphs of real-valued functions
defined on a domain X � R2. In particular, we deal with C1 cubic splines defined
on triangulations obtained from convex quadrangulations by drawing both
diagonals in each quadrilateral. The aim is to develop a compression scheme for
such spline surfaces which does not require the construction of wavelets.

Our motivation for trying this approach is the fact that except for certain box
spline spaces defined on very special partitions, it is very difficult to construct
wavelets corresponding to bivariate splines of smoothness C1 or greater, see
Remarks 8.1 and 8.2. Indeed, even the case of C0 linear splines on general tri-
angulations is unexpectedly complicated, see [4], [8], [9] and references therein.

The key to our method is to work with C1 cubic spline spaces which can be
parameterized locally using the well-known FVS-macro-elements, see [1], [10],
[11], [17]. The algorithms are based on constructing hierarchical bases for certain
nested sequences of such spline spaces. These hierarchical bases have been used as
tools for solving boundary-value problems [3].

The method is easy to implement and is computationally efficient since it is not
necessary to keep track of basis functions, and does not require solving any systems
of equations in either the decomposition or reconstruction phases. Test results
show that it can achieve good approximations with high compression rates.
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The paper is organized as follows. In Section 2 we briefly review the idea of
hierarchical bases and discuss their usefulness for compression purposes. Sec-
tion 3 reviews basic facts about C1 cubic spline spaces on triangulated quadran-
gulations, while Section 4 describes the refinement process used to create
sequences of nested spline spaces. Section 5 is devoted to the construction of
hierarchical bases for the resulting spline spaces, while Section 6 goes into the
details of the compression algorithm. Numerical examples can be found in Sec-
tion 7. We conclude the paper with remarks and references.

2. Hierarchical Bases

In this section we briefly review the idea of hierarchical bases and discuss their
usefulness for compression purposes. Suppose

S0 �S1 �S2 � � � � �S‘

is a nested sequence of finite dimensional spaces of real-valued functions. Then a
set of functions

B :¼
[‘

k¼0
fBk

i g
nk
i¼1

is said to be a hierarchical basis for S‘ provided

Bm :¼
[m

k¼0
fBk

i g
nk
i¼1

is a basis for Sm for each m ¼ 0; 1; . . . ; ‘. Then every s 2S‘ can be written in the
form

s ¼
X‘

m¼0

Xnm

i¼1
cm

i Bm
i ; ð1Þ

and the partial sums

sk :¼
Xk

m¼0

Xnm

i¼1
cm

i Bm
i ð2Þ

are functions in the spaces Sk for each 0 � k � ‘. The expansion (1) is particu-
larly useful when

ks� s0k > ks� s1k > � � � > ks� s‘�1k; ð3Þ

since in this case the sequence of splines s0; s1; . . . ; s‘ can be regarded as better and
better approximations of s. Then if we only need an approximation to s, it is
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enough to know only part of the coefficients. For example, for the coarsest
approximation s0, it suffices to know only the coefficients fc0i g

n0
i¼1. Thus, in this

case the representation (1) is well-suited for progressive transmission of coeffi-
cients.

The expansion (1) can also be used for compression provided that the basis func-
tions are stable in the sense that small changes in the size of coefficients in (1) lead to
small changes in the size of ksk. To describe a compressed approximation of s, we
can store (or transmit) only coefficients which are larger than some prescribed
threshold. The ratio of retained coefficients to original coefficients will then describe
the compression rate. (This ratio will not correspond to the true compression rate,
since we would still need some way of describing which coefficients have been
retained, but this can be done with standard coding techniques, see Remark 8.4).

3. C1 Cubic Splines on a Triangulated Quadrangulation

Suppose V :¼ fvign
i¼1 is a set of points in R2. Then (cf. [11], [12]), a set } of

quadrilaterals with vertices V is called a quadrangulation of X provided 1) X is
the union of the quadrilaterals in }, and 2) the intersection of any two quadri-
laterals in } is either empty, a common vertex, or a common edge. We focus on
quadrangulations where the largest angle in any quadrilateral is less than p. Given
such a quadrangulation, let }þ be the triangulation which is obtained by drawing
in both diagonals in each quadrilateral. We write E for the set of edges of },
where we assume each edge e has been assigned a specific orientation. Associated
with }þ, let

S1
3ð}þÞ :¼ fs 2 C1ðXÞ : sjT 2 P3; all T 2 }þg;

be the corresponding space of C1 cubic splines, where P3 is the space of cubic
bivariate polynomials.

It is well known (cf. [11]) that

n :¼ dimS1
3ð}þÞ ¼ 3V þ E;

where V and E are the number of vertices and edges of }, respectively. We now
describe a basis for S1

3ð}þÞ. For each v 2V, let kv; k
x
v and ky

v be the point-eval-
uation functionals defined on the space C1ðXÞ by

kvs ¼ sðvÞ; kx
vs ¼ DxsðvÞ; ky

vs ¼ DysðvÞ: ð4Þ

For each oriented edge e 2 E, let ce be the linear functional such that

ces ¼ DesðueÞ; ð5Þ

where ue is the center of e and De is the directional derivative associated with a
unit vector re which is perpendicular to e. Then it is well known (cf. [10], [11], [17])
that the set of linear functionals
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K :¼ fkign
i¼1 :¼

[

v2V
fkv; k

x
v; k

y
vg [

[

e2E
ce

is a minimal determining set for S1
3ð}þÞ, i.e., each spline s 2S1

3ð}þÞ is uniquely
determined by the values fkisgn

i¼1. This can also be stated as follows:

Lemma 1. Given any function f 2 C1ðXÞ, there is a unique spline sf 2S1
3ð}þÞ

satisfying

1) sf ðvÞ ¼ f ðvÞ for all v 2V,
2) Dxsf ðvÞ ¼ Dxf ðvÞ and Dysf ðvÞ ¼ Dyf ðvÞ for all v 2V,
3) Desf ðueÞ ¼ Def ðueÞ for all e 2 E.

The fact that K is a minimal determining set forS1
3ð}þÞmeans that to store a given

spline s 2S1
3ð}þÞ in a computer, we need only store the n-vector ðk1s; . . ., knsÞ. The

entries of this vector are just values of s or its first derivatives at certain points.
The process of evaluating s at any given point is greatly simplified by the fact that
the above data actually determines s locally. More precisely, if Q is a quadrilateral
of }, then s is uniquely determined on Q by the values sðvÞ;DxsðvÞ;DysðvÞ at the
four vertices of Q, coupled with the values of DesðueÞ for the four edges of Q. For
especially efficient evaluation on Q, these 16 pieces of data can be used to compute
the corresponding Bézier net for s, after which the standard de Casteljau algo-
rithm can be applied to find values or derivatives of s (see [3], [11]).

The following error bound for the Hermite interpolating spline of Lemma 1 can
be established by standard methods using the Bramble-Hilbert lemma. Let h be
the diameter of the largest triangle in }þ, and let W m

p ðXÞ be the usual Sobolev space
with semi-norm jf jm;p.

Lemma 2. Fix 2 � m � 4 and 1 � p � 1. Then there exists a constant C depending
only on m and the smallest angle in }þ such that

kDm
xDl

y ðf � sf Þkp � Chm�m�ljf jm;p;

for every f 2 W m
p ðXÞ and all 0 � mþ l � m.

4. A Refinement Scheme

In this section we discuss a natural scheme for refining a given quadrangulation
}0 and its associated triangulation }þ0 to produce nested sequences

}0 � }1 � }2 � � � � � }‘ ð6Þ

and

}þ0 � }þ1 � }þ2 � � � � � }þ‘: ð7Þ
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We will use these in the next section to define nested sequences of cubic spline
spaces.

Algorithm 1. Let }þ0 be the triangulation associated with a quadrangulation }0. For
each Q in }0,

1) let vQ be the point where the two diagonals of Q intersect,
2) connect the point vQ to the centers wQ;1; . . . ;wQ;4 of the edges of Q,
3) connect wQ;i to wQ;iþ1 for i ¼ 1; . . . ; 4, where we identify wQ;5 :¼ wQ;1.

It is clear that Algorithm 1 splits each quadrilateral in }0 into four subquadri-
laterals and each triangle in }þ0 into four subtriangles, see Fig. 1. This process can
be repeated as often as desired to produce the nested sequences in (6) and (7). Let
V0 be the set of vertices of the initial quadrangulation }0. We writeVc

0 for the set
of points at intersections of diagonals arising in step 1 of the algorithm, and Ve

0

for the set of points at midpoints of edges arising in step 2 of the algorithm. Then
applying the algorithm repeatedly, we get analogous sets of points Vc

m�1 and
Ve

m�1, and it is easy to see that the set of vertices of }m is just

Vm :¼Vm�1 [Vc
m�1 [Ve

m�1

for all 1 � m � ‘.

Let Vm, Em, and Qm denote the number of vertices, edges, and quadrilaterals in the
quadrangulation }m obtained after performing m steps of Algorithm 1 on an
initial quadrangulation }0.

Lemma 3. For all m � 0,

Qm ¼ 4mQ0;

Em ¼ 2mE0 þ 2ð4m � 2mÞQ0;

Vm ¼ V0 þ ð2m � 1ÞE0 þ ð4m � 2mþ1 þ 1ÞQ0:

Fig. 1. One step of the refinement algorithm on a single quadrilateral
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Proof. The first formula follows immediately from Qm ¼ 4Qm�1. For Em we have
the difference equation Em ¼ 2Em�1 þ 4Qm�1, and solving it leads to the stated
formula for Em. Finally, to get the third formula we solve the difference equation
Vm ¼ Vm�1 þ Em�1 þ Qm�1. (

For comparison purposes, in Table 1 we give the numbers Qm;Em and Vm for
m ¼ 0; . . . ; 8, assuming that we start with a single quadrilateral. The table also
shows the dimension dm of S1

3ð}þmÞ. We conclude this section with a result on the
stability of the refinement process. Let hm be the smallest angle in the triangula-
tion }þm.

Theorem 1. There exists a constant 0 < j < 1 depending only on h0 such that

hm � jh0; all m > 0: ð8Þ

Proof. The proof of (8) for m ¼ 1 is straightforward. For m > 1 the result follows
from the observation (see the proof of Proposition 5.2 in [3]) that hm ¼ h1 for all
m > 1. (

5. A Nested Sequence of C1 Cubic Splines

In this section we work with the nested sequence of C1 cubic spline spaces

S1
3ð}þ0Þ � S1

3ð}þ1Þ � � � � � S1
3ð}þ‘Þ

corresponding to (6) and (7). Our aim is to describe a hierarchical basis for
S1

3ð}þ‘Þ.

For each 0 � m � ‘, letVm and Em denote the sets of vertices and (oriented) edges
of the m-th quadrangulation }m in the nested sequence (6). As in Section 4, let
Vc

m be the set of diagonal crossing points of the quadrilaterals of }m. For each
vertex v of }‘, let kv; k

x
v; k

y
v be the linear functionals defined in (4). If e is any edge

of a quadrilateral, we write ue for its midpoint. For each edge e of a quadrilateral,
let ce be the linear functional defined in (5), and let ~ce be the linear functional
defined by

Table 1. The combinatorics of S1
3ð}þmÞ for m ¼ 0; . . . ; 8

m Qm Em Vm dm

0 1 4 4 16
1 4 12 9 39
2 16 40 25 115
3 64 144 81 387
4 256 544 289 1411
5 1024 2112 1089 5379
6 4096 8320 4225 20995
7 16384 33024 16641 82947
8 65536 131584 66049 329731
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~ces :¼ eDesðueÞ;

where eDe is the directional derivative associated with the unit vector pointing in
the direction of e.

We now construct a special minimal determining set for S1
3ð}þ‘Þ. Let

K0 :¼ fk0i g
n0
i¼1 :¼

[

v2V0

fkv; k
x
v; k

y
vg [

[

e2E0

ce

and for each 1 � k � ‘, set

Ck :¼ fkk
i g

nk
i¼1 :¼

[

v2Vc
k�1

fkv; k
x
v; k

y
vg [

[

e2Ek�1

fkue ; ~ceg [
[

e2Ek

ce:

Theorem 2. For each 0 � m � ‘, the set of linear functionals

Km :¼ K0 [
[m

k¼1
Ck

forms a minimal determining set for S1
3ð}þmÞ.

Proof. It is easy to see that setting the values fksgk2Km
is equivalent to setting

[

v2Vm

fkvs; k
x
vs; ky

vsg [
[

e2Em

ces: ð9Þ

By the results of Section 3, these values uniquely determine a spline s 2 S1
3ð}þmÞ.(

We now construct a hierarchical basis for S1
3ð}þ‘Þ. For each 1 � i � n0, let B0

i be
the unique spline in S1

3ð}þ0Þ such that

k0j B0
i ¼ dij; j ¼ 1; . . . ; n0: ð10Þ

In addition, for each 1 � m � ‘ and each 1 � i � nm, let Bm
i be the unique spline in

S1
3ð}þmÞ such that

km
j Bm

i ¼ dij; j ¼ 1; . . . ; nm;

kk
j Bm

i ¼ 0; j ¼ 1; . . . ; nk; k ¼ 1; . . . ;m� 1: ð11Þ

Theorem 3. For each 0 � m � ‘, the set of splines

Bm :¼
[m

k¼0

[nk

i¼1
fBk

i g

forms a basis for S1
3ð}þmÞ.
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Proof. By construction, the splines in Bm lie in S1
3ð}þmÞ and are linearly inde-

pendent. Then the result follows from the fact that the cardinality of Bm is equal
to n0 þ n1 þ � � � þ nm, which is the cardinality of the minimal determining set Km

for S1
3ð}þmÞ. (

Theorem 3 shows that B‘ is a hierarchical basis for S1
3ð}þ‘Þ, and thus every spline

s 2 S1
3ð}þ‘Þ has a unique hierarchical representation

s ¼
X‘

m¼0

Xnm

i¼1
cm

i Bm
i : ð12Þ

We now show that the basis functions in Theorem 3 are local and stable. To make
this more precise, given any vertex v of quadrangulation }m, let starmðvÞ be the
union of the (at most four) quadrilaterals of }m which share the vertex v. Simi-
larly, if ue is the midpoint of some edge of }m, let nhbmðeÞ be the union of the (at
most two) quadrilaterals of }m which share the edge e. Let Kð0Þm and Kð1Þm be the
subsets of those linear functionals in Km which involve function evaluation and
derivative evaluation, respectively.

Theorem 4. For each 0 � m � ‘, the supports and sizes of Bm
i satisfy

1) suppBm
i � starmðvÞ if km

i involves evaluation at a vertex v of }m,
2) suppBm

i � nhbmðeÞ if km
i involves evaluation at ue for some edge e of }m,

3) kBm
i k1 � 1 if km

i 2 Kð0Þm ,
4) kBm

i k1 � Hm;i if km
i 2 Kð1Þm , where Hm;i is the maximal diameter of the triangles

contained in supp Bm
i .

Proof. The claim about the supports of the Bm
i follows immediately from the fact

(cf. the discussion in Section 3) that on each quadrilateral Q of }m, a spline is
determined by the values at the four vertices of Q and at the midpoints of the four
sides of Q. Now concerning the sizes of these basis functions, in case 3), it is easy
to see that the Bézier coefficients of Bm

i on any subtriangles of }þm are bounded by
1. This implies kBm

i k1 � 1. When km
i corresponds to a derivative, the Bézier

coefficients on any subtriangle T of }þm are bounded by the diameter of T , and
kBm

i k1 � Hm;i follows. h

Properties 1) and 2) of Theorem 4 insure that the basis functions in (12) are local.
Combining these with properties 3) and 4) of the basis, we can now show that it is
also stable in the sense that if s has small coefficients, then ksk1 is also small.

Theorem 5. Suppose s 2S1
3ð}þ‘Þ is a spline whose coefficients satisfy

jkm
i sj �

e
16‘ ; if km

i 2 Kð0Þm ;

e
16‘Hm

; if km
i 2 Kð1Þm ;

8
<

:

where Hm is the maximum of the Hm;i appearing in Theorem 4. Then ksk1 < e.
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Proof. By the support properties of the basis, it follows that for any quadrilateral
Q 2 }‘, at most 16‘ basis functions have support containing Q. The claim now
follows from statements 3) and 4) of Theorem 4. (

6. Compression

In view of the discussion in Section 3, a spline s 2 S1
3ð}þ‘Þ is uniquely determined

by the values
[

v2V‘

fsðvÞ;DxsðvÞ;DysðvÞg [
[

e2E‘
DesðueÞ: ð13Þ

By the results of the previous section, s is also uniquely determined by the coef-
ficients appearing in the expansion (12). As we shall see below, generally many of
these coefficients will be small, and we can replace them by zero to define a spline ŝ
which has fewer nonzero coefficients but is still close to s. This is the basis of our
compression method.

In analogy with standard wavelet terminology, we refer to the process of com-
puting the coefficients in (12) from the values (13) as decomposition, and the
reverse process of computing the values (13) from the coefficients as reconstruc-
tion. The following theorem is the basis for a decomposition algorithm.

Theorem 6. The coefficients in (12) are given by

c0i ¼ k0i s; i ¼ 1; . . . ; n0 ð14Þ

and

cm
i ¼ km

i ðs� sm�1Þ; i ¼ 1; . . . ; nm;m ¼ 1; . . . ; ‘; ð15Þ

where

sm�1 :¼
Xm�1

k¼0

Xnk

i¼1
ck

i Bk
i : ð16Þ

Proof. The claim follows immediately from the duality properties (10) and (11) of
the hierarchical basis. (

Theorem 6 can easily be turned into an algorithm for computing the coefficients
in (12).

Algorithm 2. (Decomposition)

1) Use (14) to compute fc0i g
n0
i¼1 from fkvs; kx

vs; ky
vsgv2V0

[ fcesge2E0
.

2) For m ¼ 1; . . . ; ‘,
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a) Form the spline sm�1 as in (16),
b) Compute fcm

i g
nm
i¼1 as in (15).

For the purposes of compression, we now apply Theorem 4 to describe a thres-
holding strategy.

Algorithm 3. (Thresholding)

1) Choose e.
2) For each m ¼ 1; . . . ; ‘,

a) Drop the coefficient corresponding to km
i 2 Kð0Þm if it is smaller than e.

b) Drop the coefficient corresponding to km
i 2 Kð1Þm if it is smaller than 2me.

The decomposition algorithm will give good compression rates when the expan-
sion (12) contains many small coefficients. In view of (15), the size of the coeffi-
cients cm

i depend on the size of s� sm�1 and its first derivatives. In this connection
we have the following result.

Theorem 7. Given f 2 W 4
p ðXÞ with 1 � p � 1, suppose s 2 S1

3ð}þÞ satisfies
k‘i s ¼ k‘i f , i ¼ 1; . . . ; n‘. Then for all 1 � m � ‘,

ks� sm�1kp � C1h4
m�1jf j4;p: ð17Þ

Moreover, for any unit vector u,

kDuðs� sm�1Þkp � C2h3
m�1jf j4;p; ð18Þ

where Du is the directional derivative corresponding to u. Here hm�1 is the mesh size
of }þm�1, i.e., the diameter of the largest triangle in }þm�1. The constants C1 and C2

depend only on ‘ and the smallest angle h0 in }þ0.

Proof. By Lemma 2,

kf � skkp � Ch4
k jf j4;p;

for all 1 � k � ‘. Then (17) follows with C1 ¼ 2C from the triangle inequality. The
proof of the second inequality is similar. (

This result implies that if s interpolates a function in W 4
p ðXÞ, then the coeffi-

cients at level m corresponding to km
i 2 Kð0Þk will be approximately 1/16 as

large as the analogous coefficients at level m� 1. Similarly, the coefficients at
level m corresponding to km

i 2 Kð1Þm will be approximately 1/8 as large as the
analogous coefficients at level m� 1. This observation insures that at higher
levels, many coefficients should be small and hence can be removed in the
thresholding step.
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7. Numerical Examples

In this section we present some examples to illustrate the performance of the
compression scheme. In all cases we choose }0 as the quadrangulation consisting
of the single quadrilateral Q :¼ ½0; 1� � ½0; 1�. For each test function f and
approximating spline s, we measure both the maximum norm e1 :¼ kf � sk and
the average ‘2-norm e2 :¼ kf � sk2.

As a first test function, we take the standard Franke function

f1ðx; yÞ :¼ 3

4

�
e�
ð9x�2Þ2

4 � ð9y�2Þ2
4 þ e�

ð9xþ1Þ2
49 � ð9yþ1Þ

10

�

þ 1

2
e�
ð9x�7Þ2

4 � ð9y�3Þ2
4 � 1

5
e�ð9x�4Þ2�ð9y�7Þ2

shown in Fig. 2. Figure 3(a) shows the result of interpolating f1 using a spline s1
corresponding to level ‘ ¼ 1. This spline has 39 coefficients and gives errors of
e1 ¼ :25 and e2 ¼ :00625. Figure 3(b) shows the spline ŝ6 which corresponds to
interpolating f1 with a spline s6 at level 6, and then applying the compression
algorithm with e ¼ :02. Although s6 has 20,995 coefficients, after compression the
spline ŝ6 has only 37 coefficients, which corresponds to a compression ratio of 567
to 1. The error bounds for the compressed surface ŝ6 are e1 ¼ :099 and
e2 ¼ :0008. Note that although ŝ6 has fewer coefficients than s1, it does a much
better job of approximating f1 and capturing its shape. Both s1 and ŝ6 should be
compared with the compressed spline approximations of f1 obtained in [8] which
are based on C0 linear splines. Our surfaces are much smoother since they utilize
C1 cubic splines.

As a second test function we take

f2ðx; yÞ :¼ e�r2
0
=ðr2

0
�r2Þ; r < r0;

0; otherwise,

�

where

r :¼ rðx; yÞ ¼ ðx� :5Þ2 þ ðy � :5Þ2

Fig. 2. The function f1
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and r0 ¼ 1=128, see Fig 4. Figure 5(a) shows the result of interpolating f2 using a
spline g3 corresponding to level ‘ ¼ 3. This spline has 387 coefficients and gives
errors of e1 ¼ :117 and e2 ¼ :000147. Figure 5(b) shows the spline ĝ6 which
corresponds to interpolating f2 with a spline g6 at level 6, and then applying the
compression algorithm with e ¼ :0023. The spline g6 has 20,995 coefficients, but
after compression we get ĝ6 with only 385 coefficients. The error bounds for the
compressed surface ĝ6 are e1 ¼ :0074 and e2 ¼ :000004. Note that g3 and ĝ6 have
essentially the same number of coefficients, but ĝ6 does a much better job of
approximating f2 and capturing its shape.

8. Remarks

Remark 8.1. The classical way to create multi-resolution schemes is to work with
a nested sequence of spaces S0 �S1 � � � � �S‘ whose complement spaces
Sm 	Sm�1 can also be conveniently parameterized. Bases for these complement
spaces are generally called (pre)-wavelets. While this approach works very well for
univariate and tensor-product spline spaces, it becomes quite complicated for
bivariate spline spaces built on more general triangulations. Even the case of C0

(a) (b)

Fig. 3. The splines s1 and ŝ6 fitting f1

Fig. 4. The surface corresponding to f2
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linear splines is very complicated, see [8],[9] and references therein. Except for box
spline spaces (see the following remark), nothing is known for spline spaces with
higher order smoothness.

Remark 8.2. Multiresolution schemes have been created for certain box-spline
spaces, see e.g. [5], [6], [16]. Surface compression using C2 quadratic wavelets was
discussed in [5], see also [6].

Remark 8.3. Hierarchical bases are of importance in several areas of mathe-
matics, and in particular in multi-level methods for solving boundary-value
problems, see [3], [13], [14], [15], and [18].

Remark 8.4. The compression ratios reported in Section 7 are raw compression
ratios. To actually compress a file, we of course have to code the information to
show which coefficients have not been thresholded out. This can be done using
standard coding techniques. Taking account of this extra overhead leads to lower
actual compression ratios.

Remark 8.5. The computation of coefficients of a spline with a hierarchical
expansion (12) discussed in Theorem 6 can be regarded as an example of a Faber
interpolation scheme, see [7] and also [2]. Indeed, this expansion corresponds to
writing the Hermite interpolating spline s 2S1

3ð}þ‘Þ in the telescoping form
s ¼ s0 þ ðs1 � s0Þ þ � � � þ ðs� s‘�1Þ, where the si are given by (16). The spline si is
obtained by interpolating siþ1.
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[18] Yserentant, H.: On the multilevel splitting of finite element spaces. Numer. Math. 49, 379–412

(1986).

Don Hong
Department of Mathematics
East Tennessee State University
Johnson City
TN 37614 USA
e-mail: hong@etsu.edu

Larry L. Schumaker
Center for Constructive Approximation
Department of Mathematics
Vanderbilt, University Nashville
TN 37240 USA
e-mail: s@mars.cas.vanderbilt.edu

92 D. Hong and L. L. Schumaker: Surface Compression Using a Space of C1 Cubic Splines


