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Chapter 16

MATHEMATICAL FRAMEWORK
AND WAVELETS APPLICATIONS

IN PROTEOMICS FOR CANCER STUDY

Don Hong and Yu Shyr

Cancer is a proteomic disease. Though MALDI-TOF mass spectrometry
allows direct measurement of the protein signature of tissue, blood, or their
biological samples, and holds tremendous potential for disease diagnosis
and treatment, key challenges remain in the processing of proteomic data.
In this chapter, we will introduce a wavelet based mathematical framework
and computational tools for proteomic data processing, feature selection,
and statistical analysis in cancer study.

Keywords: Proteomics, wavelets, mass spectrometry peak detection, peak
alignment, biomarker discovery, feature selection.

1. INTRODUCTION

Proteomics, the analysis of genomic complements of proteins, has attracted
more and more attention to cancer researchers due to the fact that cancer
is a proteomic disease and protein arrays are a breakthrough because they
allow many different proteins to be tracked simultaneously. High throughput
mass spectrometry (MS) has been motivated greatly from recent develop-
ments in both chemistry and biology. Its technology has been extended to
proteomics as a tool in rapid protein identification (Chaurand et al., 1999;
Loo et al., 1999). Comparable to the exciting development of nuclear mag-
netic resonance methods during the past three decades, mass spectrometry
entered a phase of rapid growth in the mid-eighties beginning with the intro-
duction of soft ionization methods, such as electrospray ionization (ESI) and
matrix assisted laser desorption/ionization (MALDI). These new techniques
have allowed the use of mass spectrometry in applications involving large
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molecules such as in biochemical, pharmaceutical, and medical research.
Mass spectrometric methodology and examples of applications in biotech-
nology and cancer study can be found in Siuzdak (2003) and Roboz (2002).
Some recent progress on automated peak identification for time-of-flight
(TOF) mass spectra can be found in Hong and Shyr (2007).

Mass spectrometers are ion optical devices that produce a beam of gas-
phase ions from samples. They sort the resulting mixture of ions according to
their mass-to-charge (m/z) ratios or a derived property, and provide analog
or digital output signals (peaks) from which the mass-to-charge ratio and
intensity (abundance) of each detected ionic species may be determined.
Masses are not measured directly. Mass spectrometers are m/z analyzers.
The mass-to-charge ratio of an ion is obtained by dividing the mass of the
ion (m), by the number of charges (z) that were acquired during the process
of ionization. The mass of a particle is the sum of the atomic masses (in
Dalton) of all the atoms of the elements of which it is composed.

The mass spectrum of a compound provides, in a graphical or tabular
form, the intensities of all or a selected number of the acquired m/z values
from the ionic species formed. Mass spectral peaks are observed in analog
form (each peak with a height and a width) or digital form (each peak
a simple line). The heart of any mass spectrometer is the mass selective
analyzer. The concept of the linear time-of-flight analyzer was described
by Stephens in 1946. The development of MALDI-TOF in 1988 (Karas
and Hillenkamp) has paved the way for new applications, not only for
biomolecules but also for synthetic polymers and polymer/biomolecule con-
jugates. Accordingly, the major areas of applications of mass spectrometry
have been qualitative analysis and quantification.

Cancers secrete large and small molecules of numerous known and
countless unknown structures. Enzymes that allow cancers to invade and
metastasize, and surface molecules and compounds of unknown function
often serve as critical parameters of cancer behavior. Discovery of trace
compounds that could indicate the presence of early cancer is still theo-
retically possible, and still hoped for. Identification of such compounds in
extremely small quantities in biologic fluids containing hundreds of other
compounds is a classic undertaking for mass spectrometry. Coordinated
immunologic assay, isotopic, spectroscopic, nuclear-magnetic resonance,
and mass spectrometric analysis of such putative markers could advance
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the diagnostic acumen so that we might recognize pre-cancerous states, or
cancers so early in their course that a cure could be readily achieved (see
Henschke et al., 1999; Srinivas et al., 2001; andYanagisawa et al., 2003 for
examples).

Mass spectrometers attempt to answer the basic questions of WHAT
and HOW MUCH is present by determining ionic masses and intensities.
MALDI-TOF MS is emerging as a leading technology in the proteomics
revolution. Indeed, the year 2002 Nobel prizes in chemistry recognized
MALDI’s ability to analyze intact biological macromolecules. Though
MALDI-TOF MS allows direct measurement of the protein “signature” of
tissue, blood, or other biological samples, and holds tremendous potential
for disease diagnosis and treatment, key challenges still remain in the pro-
cessing of MALDI MS data.

The use of high-throughput mass spectrometry produces data sets com-
prised of spectra whose graphs are of the type shown in Figure 1. On the
horizontal axis are mass/charge (m/z) values and on the vertical axis an
intensity measurement that indicates a relative abundance of the particle.
The analysis of such data involves inferring the existence of a peptide
of a particular mass from the existence of a spike in the spectrum. The

Fig. 1. Graphs of MALDI-TOF mass spectra.
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data is in very high dimensional setting and there are uncertainties in peak
position and as well the intensity. To identify biomarkers from these spectra,
many data-analytic questions arise: What feature indicates the existence of
a peptide? How does one even define a feature and subsequently extract it
from a set of spectra with significant between-sample variability in intensity,
background noise, and in the m/z-value at which a feature is recorded? In
addition, data registration is confounded by the variability in the location
and the shape/size of features when compared across samples.

To date, MALDI-TOF or SELDI (surface-enhanced laser desorption
ionization), a variant of MALDI technology has been applied to search
cancer biomarkers, with some success. There is also preliminary evidence
that we may be able to discover patterns that can reliably distinguish cancer
patients from healthy individuals (Soltys et al., 2004; Waldsworth et al.,
2004; Yanagisawa et al., 2003; Zhang et al., 2004 for examples). These
findings should be greeted with cautious optimism. When it has been pos-
sible to identify the protein peaks, they have often turned out to be well-
known acute-phase proteins. Some authors have claimed that MS is intrin-
sically limited in its depth of coverage, with a dynamic range that prevents
it from being able to find low-abundance proteins (Diamandis, 2004). This
brings us to analysis tools. There is no consensus on the best methods to
analyze mass spectra from proteomic profiling experiments. Most published
studies perform data preprocessing and peak detection with software from
the manufacturers of MALDI/SELDI instruments. In fact, the software is
extremely conservative about calling something a peak and its baseline cor-
rection algorithm introduces substantial bias into the estimates of the size of
a peak. These algorithmic weaknesses can reduce the effective sensitivity of
the instrument below its true capacities and can hamper its reproducibility.
Many of ad hoc approaches have been implemented by various groups
(Coombes et al., 2005; Morris et al., 2005; Yu et al., 2006; Chen et al.,
2007). It is substantial to develop a comprehensive set of mathematical and
computational tools for MALDI TOF MS data analysis.

Multiscale tools such as wavelets provide promising techniques for
MALDI MS data analysis. The word “wavelets” means “small waves” (the
sinusoids used in Fourier analysis are “big” waves), and in short, wavelet
is an oscillation that decays quickly. Mathematically, wavelets usually are
basis functions of anL2 space that satisfy so-called multiresolution analysis
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requirements (Chui, 1992; Daubechies, 1992; Hong et al., 2005). In recent
years, wavelets have been applied to a large variety of signal processing
and image compression (Mallat, 1999). Also, there is a growing interest in
using wavelets in analysis of biomedical signals and functional genomics
data (see Aldrobi and Unser, 1996; de Trad et al., 2002; Hirakawa et al.,
1999; Lio, 2003 for examples). Wavelet theory is developed now into a
methodology used in many disciplines: engineering, mathematics, physics,
signal processing and image compression, numerical analysis, and statistics.
Wavelets are providing a rich source of useful tools for applications in time-
scale types of problems. Wavelet based methods have found applications in
statistics in areas such as regression, density and function estimation, mod-
eling and forecasting in time series analysis, and spatial analysis (Donoho
and Johnston, 1995, 1998; Silverman, 1999). In particular, Donoho and
Johnstone found that wavelet threshold has desirable statistical optimality
properties. Since then, wavelets have proved to be very useful in nonpara-
metric statistics and time series analysis.

In the following discussions, we will focus primarily on: (a) establishing
a general mathematical framework for modeling and representing MALDI
MS data that allows the recovery of, as near as possible, the “true” signal
from the machine data (innovative mathematical tools to be developed
include non-uniform wavelets, biological diffusion maps and geometric
harmonics, and shape-preserving splines); (b) designing algorithms and
developing software for performing preprocessing operations such as peak
alignment and detection, baseline correction and denoising, and a statistical
analysis of MALDI MS data; and (c) developing tools for feature extraction
and biomarker discovery. In particular, we will focus on a wavelet based
novel multiscale scheme for identifying biological signatures of MALDI-
TOF MS cancer data.

2. MATHEMATICAL REPRESENTATION
AND PREPROCESSING OF MALDI MS DATA

In this section we model the MS signal as being composed of three dis-
tinct components: background function, true signal, and machine noise.
This model allows us to address signal reconstruction and subsequent
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biological interpretation in a mathematically principle manner. We will
explain how each component is created and how previous approaches heuris-
tically address the modeling of each component separately. In the subse-
quent subsections, we will discuss the specific techniques we employ in
order to model each component.

2.1. Mathematical Model for MALDI-TOF MS Data

The operation of a mass spectrometer can be divided into four main steps:
sample introduction, ionization, mass analysis, and detection/data analysis.
In the ionization stage, an ion-gas is produced from a given sample and in
the mass analysis stage. The ions are then separated according to their
mass-to-charge ratio (m/z) using electromagnetic fields. The first mass
spectrometers were produced in the early 1900s (Thomson, 1913). Mass
spectrometry has been used to investigate biological processes since the
late 1930s; however, it is only recently that the advances in ionization tech-
nology permit the use of mass spectroscopy to study large molecules (up to
300,000 Da), such as proteins or peptide fragments that occur in biological
samples. In particular, the MALDI spectrometer has become a central tool
in modern protein research. In a MALDI-TOF spectrometer, the analyte is
first embedded in a solid “matrix” that absorbs energy from a laser whose
wavelength is matched to the matrix. The resulting intense heating of the
matrix produces a gas-ion plume that is then accelerated through a potential
difference V . An ion of massm and charge z acquires a change in potential
energy of zV which, to first order, is translated into a change of kinetic
energy of (1/2)mv2, exiting with a velocity determined by the ratio m/z.
The ions then travel a length D to a detector where the density of ions is
recorded as a function of the time of arrival t. The mass charge ratiom/zmay
then be expressed as a function of t of the form (Vestal and Juhasz, 1998):

m/z = A(t − t0)
2, (1)

where A and t0 are constants depending on instrumental parameters such
as V and D.

The mathematical processing of MS signals can be roughly divided into
two steps. First, in the “preprocessing” step, we attempt to recover from the
time of arrival data, as accurately as possible, the “true” signal reflecting
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the mass/charge distribution of the ions originating from the sample. The
preprocessing step includes registration, denoising, baseline correction, and
deconvolution. In the preprocessing step, these operations are performed
independently of any biological information one seeks to extract from the
data. The second type of processing attempts to represent the data in a form
that facilitates the extraction of biological information. This step involves
operations such as dimension reduction, feature selection, clustering, and
pattern recognition for classification.

A mass spectrometer has a finite resolution power mainly due to varia-
tions in the initial position and velocity contained in the ion-plume.A “pure”
sample consisting of ions of a single mass/charge ratio y = m/z results in
an “impulse response” k(x, y)where k depends on the distribution of initial
position and velocity along with the value of machine parameters (such as
V andD) that are chosen to minimize the resolution (σ(y)/y) for y in some
interval of interest whereσ(y)denotes some measure of the spread of k(x, y),
for example, standard deviation or half-width at half-maximum. Typically,
k is assumed to be of the form: k(x, y) = exp{−(x − y)2/σ(x)σ(y)), and
that σ(y) is slowly varying over intervals. As shown in (Vestal and Juhasz,
1998), k can be explicitly calculated from the mass analyzer geometry and
operating voltages and from the distributions of initial ion position and
velocity. Assuming a parametric form for the initial distributions, one can
find parametric representations for k.

To first order (ignoring interactions between ions), a mass spectrometer
is a linear device and so the output f(x) in the absence of machine noise
from a sample with mass/charge distribution µ is of the form:

f(x) =
∫
k(x, y)dµ(y).

Specifically we propose to consider symmetric kernels k of the
form:

k(x, y) = γ((x− y)2

(σ(x)σ(y))
,

where: R+ → R+ is a decreasing function with rapid decay. For
fixed y, it is usually the case that σ(x) is approximately constant for
|x − y| = O(σ(y)) and so k(x, y) is essentially a small symmetric
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bump. If the sample distribution is of the form µs = ∑
i αiδxi,, where δa

denotes a unit mass at a, then the observed signal is a sum of bumps of
the form:

S(x) =
∑
i

αik(x, xi).

However, a real world signal differs from this idealized scenario in several
ways. First, the ion-plume contains a distribution µm of ionized matrix
molecules having a high spectral content in the low mass region, that is, the
matrix produces ions of a wide variety of masses in this range. Secondly,
because of collisions or because of molecular fragmentation that occurs
during the time of flight, ions are spread non-locally across the mass scale.
We model this non-local scattering with a second kernel, κ, with slow decay.
This suggests the following “incoherent” contribution I(x) to the observed
signal:

I(x) =
∫
k(x, y)dµm(y)+

∫
κ(x, y)dµ(y),

where µ = µs + µm. Finally, a real MS signal contains a high frequency
machine electronic machine noise ε(x), and so we model an observed signal
by a sum of the form f(x) = I(x) + S(x) + ε(x). Generally, we shall also
consider a nonlinear component in I.

Based on the above mathematical model for MALDI MS data, multi-
scale deconvolution approach can be used in the statistical estimation for
the MALDI MS data analysis. Mass spectrometry of proteins promises to
be a very valuable tool in diagnostic applications. There are several chal-
lenges to the use of such proteomics data in classification and clustering
of samples from diseased and normal patients. In particular, the number
of measurements taken per sample is very large and even if considered
into peak areas or peak heights, the number of potential predictors greatly
exceeds the number of samples. Therefore, there has been considerable
effort involved in the preprocessing of the data (see Baggerly et al., 2004;
Coombes et al., 2005; Gentzel et al., 2003; Morris et al., 2005; Chen et al.,
2007; Yu et al., 2006 for examples).
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2.1.1. Baseline correction and normalization

Incoherent contribution I(x) is usually approximated by a so-called baseline
or background function. An observed MALDI MS signal f(t) is often
modeled as the superposition of three components:

f(x) = B(x)+ S(x)+ ε(x),

where,B(x) is a slowly varying “baseline” that approximates the incoherent
component I(x), S(x) is the “true” signal to be extracted, and ε(x) repre-
sents a high frequency machine noise. The underlying assumption in these
techniques is that B, S and ε are varying at different scales. Recently, in
Coombes et al. (2005), Chen (2004), Chen et al. (2007), and Hong et al.
(2007), wavelet-based methods was proposed in the preprocessing of SELDI
and MALDI spectra data, respectively. They use baseline correction and
wavelet denoising to approximate S(x) and they show better peak detection
than previous methods.

From experimental observations, one often includes the constraint that
the baseline is non-negative and decreasing. For this purpose we are inter-
ested in the use of shape preserving splines with non-uniform knots Chen
et al. (2007). Furthermore, we propose to use models for I(x) as above to
estimate its properties in order to construct better baseline approximations.
In particular, we expect that I(x) can be represented as I(x) = B(x)+W(x),
where B(x) is now the projection onto a coarse space in a multireso-
lution and W is a component that can be represented in a wavelet basis
with small coefficients. Because the bump width σ(x) is not constant, the
natural representations of f(x) and S(x) are in non-shift invariant spaces. We
believe that using wavelets for baseline estimation and for reconstructing
the true signal S(x) can improve the accuracy of the appearance of the
spectrum and the quality of a result from subtracting one spectrum from
another.

Some simple techniques for constructing a baseline include fitting local
minima with a polynomial or spline function (Chen et al., 2007), or using
a median filter of appropriate window size (Coombes, 2005). See Figure 2
for a comparison of a MALDI mass spectrum on raw data with and without
baseline correction (Chen et al., 2007).
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Fig. 2. MALDI MS signals with and without baseline correction.

To compare spectra in the same scale, the normalization step is
inevitable. Since the spectrum after baseline correction is closer to the true
distribution of the signal, we can normalize every element in the spectrum
vector. In Chen et al. (2007), we apply an l2 averaging formula for the
normalization, which is in the energy metric.

2.1.2. Spectra registration and peak alignment

Spectrum data registration means that aligning the time of flight data t with
m/z as accurately as possible across samples so that different samples may
be compared. In the simple case of (1), this means determining the con-
stants A and t0 for each given sample (typically done by locating known
reference mass peaks in the sample). Techniques for the registration of 2D
and 3D data have been well-studied and remain an active area of research in
imaging science. Many of these techniques use a multiresolution approach
by first registering the signals at a “coarse” resolution and then iteratively
registering the signals at successively finer resolutions. This results in algo-
rithms both computationally faster and also more “robust” (Unser et al.,
1995).
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The goal of the MALDI-TOF MS data preprocessing is to identify the
locations and the intensities of peaks. The spectra, after all previous pre-
processing steps, can be put in a matrix of column spectrum vectors of
intensities.

Usually, the local maxima in each column are the peaks of each
spectrum. The local maximum selection, without denoising the raw data,
will generate more than one peak on a true peak interval. To filter out smaller
peaks, an ad hoc method based on the ratio of signal and noise (S/N) is
proposed in (Coombes et al., 2005). In the next section, we will discuss in
details on denoising for mass spectrometry data.

Now, let us discuss the cross sample alignment of MS data. For data
samples from patients, the data first has to be preprocessed with the proper
background subtracted, normalized, and the different fractions combined
to obtain one integrated spectrum for each patient. The integrated spectrum
is then binned or aligned so that the data for all patients in the sample is
formatted in a matrix with one index representing the patients and the other
index the peaks (discrete m/z’s corresponding to the mean of the m/z of
each bin).

In real application, one peak will be identified within a certain sep-
aration range (SR). An experimental formula for SR is given by SR =
2 + (Xi/1000) in Daltons, where Xi is the m/z location. However, in the
peak matrix, the positions of peaks of each column around the same m/z
value maybe different from each other slightly (apart from two to three rows
in the matrix). Therefore, we need to bin these peaks in order to correspond
to the same m/z value. This is also called cross samples peak alignment. A
so-called average spectrum is determined for the binning purpose in Morris
et al. (2005). An efficient and effective binning method, called PSB, is
developed in Hong et al. (2007) by projecting spectra to a function of number
of peaks. See Figure 3 for PSB results. A so-called central spectrum idea by
using local clustering techniques is introduced for binning in Chen (2004).
Binning approach reduces the dimension. In Purohit et al. (2003), com-
bining the binning procedure, a square root transform on the data is applied
to help stabilize the variance and in turn, made a significant improvement
in clustering results. A curve alignment method developed in Bar-Joseph
et al. (2003), which combines spline interpolation with clustering can be
employed as an idea for peak selection and binning in the preprocessing
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Fig. 3. A partial mass peak distribution with binned by PSB.

step. It will be interesting to compare the outcomes between the binning
approach and the curve alignment method, as well as among many choices
of multiscale operations.

In summary, we modeled the MALDI MS signal as a superposition of
an incoherent signal created by high mass spectral content of the matrix
together with non-local scattering, the true observed signal, and an elec-
tronics related noise component. We also discussed how the true observed
signal is in effect a superposition of distributions of the mass values in the
ion plume. In the next section, we discuss in detail the specific mathematical
techniques we plan to apply to model each of these components, especially
for estimation and removing the noise using wavelets.

3. MULTISCALE TOOLS

We would like to apply multiscale tools, such as wavelets in the study of
MALDI MS data. In this section we first briefly introduce wavelets and
then discuss how these techniques can be applied to separate the different
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components of an observed MALDI MS signal because of the different
time-scale characteristics of the components.

3.1. Wavelets and WaveSpec Software

Wavelets are a relatively recent development in applied mathematics.
Vidakovic (1999) mentioned that the first definition of wavelets could be
attributed to Morlet et al. (1982) (Grossmann and Morlet, 1984). Now the
term wavelet is usually associated with a function ψ ∈ L2(R) such that its
translations and dilations

ψj,k(x) = 2−j/2ψ(t/2j − k),

for integers j and k constitute an orthonormal basis of L2(R). The wavelet
transform is a tool that cuts up data or functions into different frequency
components, and then studies each component with a resolution matched to
its scale. The wavelet transform on a finite sequence of data points provides
a linear mapping to the wavelet coefficients: wn = Wfn, where the matrix
W = Wn×n is orthogonal and wn and fn are n-dimensional vectors. The
wavelet approximation to a signal function f is built up over multiple scales
and many localized positions. For the given family of scale functions and
corresponding wavelet functions:

φJ,k = 2−J/2φ(t/2j − k), ψj,k = 2−j/2ψ(t/2j − k), j = 1, 2, . . . , J.

The coefficients are given by the projections:

sJ,k =
∫
f(t)ψJ,k(t)dt, dj,k =

∫
f(t)ψj,k(t)dt

so that

f(t) =
∑
k

sJ,kψJ,k(t)+
∑
k

J∑
j=1

dj,kψj,k(t).

The large J refers to the relatively small number of coefficients for the low
frequency, smooth variation of f , the small j refers to the high frequency
detail coefficients.

When the sample size n, the number of observations, is divisible by
2, say n = 2J , then the number of coefficients, n can be grouped as n/2
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coefficients d1,k at the finest level, n/4 coefficients d2,k at the next finest
level, . . . , n/2J coefficients dJ,k and n/2J coefficients sJ,k at the coarsest
level. Some wavelet applications in cancer data analysis were reviewed
recently in Hong and Shyr (2006).

Multiscale analysis tools such as wavelets are providing a rich source of
useful tools for applications in time-scale types of problems (Sentelle et al.,
2002). The Fourier transform extracts details from the signal frequency, but
all information about the location of a particular frequency within the signal
is lost. Though window Fourier transform (WFT) can help to determine
time location for nonstantionary signals, the lack of adaptivity of WFT
may lead to a local under- or over-fitting. In contrast to WFTs, wavelets
select widths of time slices according the local frequency in the signal.
This adaptivity property of wavelets certainly can help to us to determine
the location of peak difference(s) of MALDI-TOS MS protein expressions
between cancerous and normal tissues in term of molecular weights.

Wavelets, as building blocks of models, are well localized in both time
and scale (frequency). Signals with rapid local changes (signals with dis-
continuities, cusps, sharp spikes, etc.) can be precisely represented with just
a few wavelet coefficients.

Wavelets can be useful in detecting patterns in DNA sequences as well.
In Lio and Vannucci (2000), it was shown that wavelet variance decompo-
sition of bacterial genome sequences can reveal the location of pathogenicity
islands. The findings show that wavelet smoothing and scalogram are pow-
erful tools to detect differences within and between genomes and to sep-
arate small (gene level) and large (putative pathogenicity islands) genomic
regions that have different composition characteristics. An optimization
procedure improving upon traditional Fourier analysis performance in dis-
tinguishing coding from noncoding regions in DNA sequences was intro-
duced in Anastassiou (2000). The approach can be taken one step further by
applying wavelet transforms. To find the similarities between two or more
protein sequences is of great importance for protein sequence analysis.
In de Trad et al. (2002), a comparison method based on wavelet decom-
position of protein sequences and a cross-correlation study was devised
that is capable of analyzing a protein sequence “hierarchically,” i.e., it can
examine a protein sequence at different spatial resolutions.A sequence-scale
similarity vector is generated for the comparison of two sequences feasible
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at different spatial resolutions (scales). The cosine Fourier series and dis-
crete wavelet transforms are applied in Morozov (2000) for describing
replacement rate variation in genes and proteins, in which the profile of
relative replacement rates along the length of a given sequence is defined
as a function of the site number. The new models are applicable to testing
biological hypotheses such as the statistical identity of rate variation profiles
among homologous protein families.

Despite advances in instrument resolution and sensitivity of MS tech-
nology, the effective resolution is limited by the distribution of naturally
isotopes of common elements. This isotopic envelope of molecular weights
complicates analysis of spectra when two or more species differ by only a
few Daltons. The species exhibit overlapping spectral signatures, and form
what is here termed a “peak cluster.” The resolution of such clusters would
be an important advance in biomedical research in general, and cancer
research in particular.

As discussed above, an observed MALDI signal consists of a true signal
S(x), an incoherent signal I(x) and machine noise ε(x). To extract the true
signal we need to remove the noise and the incoherent signal from the
observed data. In the wavelet representation, the noise ε is concentrated in
the fine scale wavelet coefficients and the incoherent signal can be approxi-
mated by the projection onto the coarse space spanned by the functions φJ,k.
A variety of threshold strategies can be used to remove the machine noise
from the data. A baseline can be designed using a coarse approximation and
a component with small coefficients in a wavelet space.

The discrete mass spectrum data provide information about the cancer
tissue and normal tissue at particular molecular weights. The wavelet
approximation to a signal function f is built up over multiple scales and
many localized positions. A discrete wavelet transform (DWT) decom-
poses a signal into several vectors of wavelet coefficients. Different coef-
ficient vectors contain information about the signal function at different
scales. Coefficients at coarse scale capture gross and global features of the
signal while coefficients at fine scale contain detailed information.Applying
wavelet transform to MALDI-TOF MS data, the protein expression dif-
ference can be measured at different resolution scales based on a molecular
weight-scale analysis. It may reveal more information than other conven-
tional methods.
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Following Donoho and Johnstone (1994, 1995), we can apply a variety
of threshold techniques for MALDI MS data processing. The idea behind
threshold is the removal of small (wavelet) coefficients, considered to be
noise. This leaves large coefficients in the multiscale decomposition object
that can then be used to estimate the signal after reconstruction. There are
many ways to threshold. The universal threshold is computed as

λ = s
√
(2 logM),

where M is the number of data points (wavelet coefficients) and s is an
estimate of the variation of the coefficients on the standard deviation scale.
Probability threshold is selecting the pth quantile of the coefficients based
on a given probability value p. Soft threshold is to modify the coefficients
by the formula:

dnewjk = sgn(djk)(|djk| − λ)+

for the thresholding scale λ. If the noise process is stationary, one effect of
correlated noise is to yield an array of wavelet coefficients with variances
that depend on the level j of the transform. This leads to level-dependent
threshold, using for each coefficient a threshold that is proportional to its
standard deviation (Johnstone and Silverman, 1997). The level-dependent
threshold method applied in wavelet regression gives optimally adaptive
behavior. Block threshold is to threshold the wavelet coefficients in groups
(blocks) rather than individually to increasing estimation accuracy by uti-
lizing information about neighboring coefficients. Since the high frequency
components decrease as the mass weight increases, we used block threshold
strategy for MALDI-TOF MS data denoising (Chen et al., 2007).

An important development in the statistical context has been the routine
use of the non-decimated wavelet transform (NDWT), also called the sta-
tionary or translation-invariant wavelet transform, see (Lang et al., 1996;
Nason et al., 1995; Walden and Cristan, 1998) for example. Conceptually,
the NDWT is obtained by modifying the Mallat DWT algorithm: at each
stage, no decimation takes place but instead the filters are padded out
with alternate zeros to double their length. The effect is to yield an over
determined transform with n coefficients at each of log2 n levels. The
transform contains the standard DWT for every possible choice of time
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origin. Johnstone and Silverman (1997) investigated the use of the NDWT in
conjunction with the marginal maximum likelihood approach. The NDWT
has been used for SELDI MS data analysis (Coombes, 2005). In general, in
WT, hard thresholds have a better l2 performance while soft thresholds gen-
erate better smoothness results. However, with stationary discrete wavelet
transform (SDWT), since the coefficients are undecimated, hard thresholds
will have both good l2 performance and smoothness (Coombes, 2005; Lang
et al., 1996).

When we do wavelet denoising, we are faced with many parameters to
choose, such as the type of a mother wavelet, the decomposition level and
the values of thresholds. Based on the knowledge of the wavelet analysis to
the data set, we try to use the objective criteria to determine the threshold
values. Basically, the choice of mother wavelet seems not matter much,
while the value of thresholds does (Coombes et al., 2005). Then, setting
the values of thresholds becomes a crucial topic. According to the analysis
above, we would like to set the threshold values based on the data sets’
properties.

It has been observed that the high frequency components of spectrum
data reduce as the mass weight increases because the values of median
absolute deviation (MAD) change a lot throughout differentm/z segments.
MAD/0.67 is a robust estimate of the non-normal variability. This phe-
nomenon might be caused by that the machine has relative low resolution
for ions of small m/z values at low m/z interval. Therefore, we should
set different thresholds at different mass segments by the changing trend
of the coefficients at each level (Lavielle, 1999). In this way, the denoised
signal can reduce the variance in the beginning part and retain the useful
information in the posterior part.

In cancer research projects carried at Vanderbilt Ingram Cancer Center
(VICC), we observed that most coefficients at levels from 1 to 4 are dumped.
The reason is that they are of high frequency and low energy (the pro-
portion of the total energy of the signal is only 10−12). We also need to
be very cautious when manipulating the low frequency components. We
believe choosing threshold values based on the exploratory data analysis
will achieve better wavelet denoising performance. This denoising method
performed well in the study (Chen et al., 2007).



February 29, 2008 16:39 B-593 9in x 6in FA ch16

488 Hong and Shyr

Fig. 4. Graphical user interfaces of WaveSpec software.

A software package called WaveSpec implementing the mathematical
framework has been developed at Biostatistical Shared Resource of VICC.
A MatLab based version of the software has been used to serve cancer
research groups in VICC for MALDI-TOF MS data processing. Figure 4
shows a graphical user interface (GUI) of the software.

3.2. Diffusion Maps

Very recently, diffusion maps and geometric harmonics were introduced to
understand the geometric structures of the data sets (Coifman et al., 2005a,
2005b). In continuous Euclidean setting, tools from harmonic analysis, such
as Fourier transforms and wavelet decompositions have proven to be highly
successful in image compression, signal processing, denoising, and density
estimation. In statistical data analysis, it is essential to organize graphs and
data sets geometrically. Geometric diffusion is a tool for structure definition
of data by extending multiscale harmonic analysis to discrete graphs and
subsets of Rn.
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A diffusion kernel on the data set is explicitly constructed and a diffusion
map is defined by employing the spectral properties, spectrum and eigen-
functions. Also, a multiscale extension scheme is defined for decomposing
empirical functions into frequency bands and showing the links between
the intrinsic and extrinsic geometries of the set.

Coifman et al. (2005) introduced a family of diffusion maps that allow
the exploration of the geometry, the statistics, and functions of the data.
Diffusion maps provide a nature low-dimensional embedding of high-
dimensional data that is suited for subsequent tasks such as visualization,
clustering, and regression. It will be interesting to follow diffusion map’s
idea by emphasizing on the biological meaning and chemical structure of
the mass spectrometry data set. The kernel in the model discussed above is
symmetric and non-negative and we can define an associated diffusion map
for such a kernel. The formalization permits the proper identification and
estimation of a wavelet spectrum. Once the characteristic frequency for a
particular biological function has been determined, it is possible to identify
the individual mass spectrum’s “hot spots” using wavelet transform that
contribute mostly to the characteristic frequency and also to the protein’s
biological function (de Trad et al., 2002). A suitable defined biological
diffusion map will give potential improvements in the early detection and
diagnosis of various types of cancer. It would be great to obtain a biological
diffusion map for decomposing MALDI MS data into frequency bands and
showing the links between the intrinsic and extrinsic biology of the data.

4. CLUSTERING AND CANCER DATA
CLASSIFICATIONS

Mass spectra are intrinsically functional observations, and are well-suited
to wavelet methods. We would like to apply multiscale techniques to further
study preprocessed mass spectra for feature extraction. The significant dif-
ference in the findings would help the identification of protein markers.

Biomarkers are measurable molecular phenotypic parameters that char-
acterize an organisms state of health or disease, or a response to a par-
ticular therapeutic intervention. Biomarkers are sought as instruments to
help in disease risk assessment, early disease detection, and as surrogate
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endpoints in clinical trials (or in some cases as surrogates for environ-
mental and other exogenous factors such as diet). Establishing/validating
biomarkers include the following steps: (a) identify candidates, (b) con-
ducting clinical assays to diagnose known disease, (c) detection of pre-
clinical disease (pseudo-prospectively) and establishment of screen-positive
rule, (d) prospective screening, establish extend and characteristics of iden-
tified disease as well as false referral rates, and (e) quantification of overall
impact on disease. The biomarker selection problems maps nicely to the
problem of feature selection for classification in statistics and machine
learning. Feature selection is the problem of selecting a subset of variables
of minimal size that can predict, classify, or diagnose a target variable of
interest as well as, or better than, the full set of available predictors. In the
case of MALDI-TOF MS signals, biomarkers could be individual masses,
individual mass distributions or could be expressed in terms of wavelet coef-
ficients or principal components. Selecting a minimal set of predictors with
maximum accuracy is important for treating the curse of dimensionality,
for reducing the cost of observing the required variables for prediction, and
for gaining insight into the domain.

There are several families of methods biomarker selection on the recon-
structed MALDI-TOF MS signal. Principal component analysis (PCA)
involves a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated variables called
principal components. The first principal component accounts for as much
of the variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible. A widely used
technique for the representation of sensor data is based on diagonalizing
the correlation tensor of the data-set, keeping a small number of coherent
structures (eigenvectors) based on principal components analysis (PCA).
This approach tends to be global in character. It is possible to combine
multiscale analysis and PCA to obtain proper accounting of global contri-
butions to signal energy without loss of information on key local features.
We can exploit such a combined wavelet-PCA technique in MALDI data
processing.

Recently, we express MALDI MS data, after using WaveSpec prepro-
cessing, in terms of a convex combination of dominant biological com-
ponents based on principal component data for an initial investigation of
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Fig. 5. MALDI-TOF MS lung cancer data plot based on selected three principal compo-
nents (left). Simplex representation for MALDI-TOF MS lung cancer data (right).

feature extraction on MALDI-TOF MS data in lung cancer study (Hardin
and Hong, 2006). Figure 5 shows that a convex combination (simplex)
expression using super positions provides a promising tool for cancer feature
extraction. The choice of analyzing wavelet basis leads to highlighting of
certain features through the strengthening of a small set of coefficients,
leaving the remainder at low amplitudes. It will be interesting in investi-
gating adaptive wavelet-PCA approaches to pattern extraction from MALDI
MS data, signal inversion and feature enhancement in the presence of noise.

A reliable and precise classification of tumor is essential for success
in diagnosis and treatment of cancer. DNA microarrays have been used to
characterize the molecular variations among tumors by monitoring gene
expression profiles on a genomic scale. MALDI-TOF MS can profile pro-
teins up to 50 kDa in size in tissue. Contributions of mass spectrometry to
this infant field are largely untapped. This technology can not only directly
assess peptides and proteins in sections of tumor tissue, but also can be
used for high resolution image of individual biomolecules present in tissue
sections. The protein profiles obtained can contain thousands of data points,
necessitating sophisticated data analysis algorithms.

Clustering assigns samples to classes on the basis of their distance
from objects known to be in the classes. The distance or similarity will
have a large effect on the performance of the classification procedure. In
orthogonal wavelet transform, the L2 distance for the signals is equivalent
to the l2 distance for the vectors of wavelet coefficients. Therefore, we
can perform clustering of MALDI MS data using wavelet coefficients with
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Euclidean distance. If we view the wavelet coefficients in different scales
as a microarray data set, then methods in microarray data analysis may be
used for MALDI MS data analysis via wavelet coefficients as well. Shyr and
Kim developed weighted flexible compound covariate methods (WFCCM)
for classifying microarray data (Shyr and Kim, 2003). We can apply such
methods to MALDI MS data for classification as well.

Lung cancer (Hoffman, 2002) is usually not detected early, and thus
may be diagnosed at an advanced stage, where intervention or therapy is
less effective. Although the incidence rate of lung cancer is lower than for
breast and prostate cancer, the mortality rate of lung cancer is the highest
for all cancers in both men and women. Lung cancer kills more Americans
each year than the next four leading cancer killers, cancers of the colon,
breast, prostate and pancreas, combined.

Precisely classifying tumors is of critical importance to cancer diagnosis
and treatment. Recently, there is increasing interest in changing the basis of
tumor classification from morphologic to molecular. Mass spectrometry of
proteins promises to be a very valuable tool in diagnostic applications. There
are several challenges to the use of such proteomics data in classification and
clustering of samples from diseased and normal patients. In the following,
we mention a clustering method applied to the preprocessed MALDI-TOF
MS data from lung cancer patients, which was collected at VICC, using
WaveSpec software (Chen, 2004).

Clustering analysis, as a multivariable statistics technique, is widely
used in many different fields of study, such as engineering, genetics,
medicine, psychology, and marketing. Generally, after clustering, we get
the result that the profiles of objects in the same cluster are very similar and
the profiles of objects in different clusters are relatively quite different.

In an example of 50 patients which will be discussed in detail later, there
are many tissue mass spectra from healthy people and several groups of sick
patients who have different types of cancer. We can see that even we do not
know the distribution in advance, by clustering we can divide the spectra
into several groups that are almost the same as the real distribution.

Generally, we build the model in the following: the initial object can
be modeled as a p × n matrix for n vectors of length p. According to the
characteristics of the vectors, we can cluster the matrix into several groups
in the form of several submatrices: p× n1, p× n2, . . . , for

∑
ni = n.
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Hierarchical clustering and k-means clustering are two main clustering
methods. Hierarchical clustering method shows us a grouping structure of
the data, in the form of a cluster tree. The tree is not a single set of clusters,
but rather a multi-level hierarchy, where clusters are more similar at the
lower level, which allows you to decide what level or scale of clustering is
most appropriate for your data.

For a p × n matrix corresponding to n vectors (objects), we use a
metric (distance) to group them according to their relationship (similarity).
For two vectors x and y, both having length p, some common distances
are Euclidean distance: d(x, y) = [∑(xi − yi)

2]1/2, Manhattan distance:
d(x, y) = ∑ |xi − yi|, and correlation distance: d(x, y) = 1 − ρ(x, y),
where ρ(x, y) is the correlation coefficient of x and y. Different distances
may lead to the different cluster trees.

For n vectors, we will have n(n − 1)/2 pair distances. Then we need
to link these newly formed clusters to other objects to create bigger
clusters until all the objects in the original matrix are linked together in
a hierarchical tree. There are several ways to create the cluster hierarchy
tree such as shortest/longest distance, average distance and centroid dis-
tance. Matlab software has a function to display the hierarchical tree.
To determine where to divide the hierarchical tree into clusters, we need
to choose proper cutoff points so that we can cut the trees into several
groups.

Comparing with the tree structure of hierarchical clustering, the k-means
clustering method has set up the number of groups before clustering. Then
all objects are grouped into k clusters, objects within each cluster are as
close to each other as possible, and as far from objects in other clusters as
possible. There are several member objects and a centroid, or a center in
one cluster. The center for each cluster is a vector, which has the minimum
sum of distances from all objects. K-means clustering uses an iterative
algorithm to move objects between clusters until the sum of distances cannot
be decreased any further.

Now, we have divided the p × n matrix into k clusters, but not all
the elements in one cluster are different from the ones in other clusters.
Therefore, we should figure out which elements are distinct in one cluster,
in other words, the characteristic elements. For any two clusters, we can do
pair t-test to the objects and find the rows of small p-values; or we can find
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the weighted average distance at a certain row:

w = dB/(k1dw1 + k2dw2 + ε),

where dB is the distance between cluster centers, dwi is the average
(Euclidean) distance among all sample pairs in one cluster, and ki =
ni/(n1 + n2) (Goldstein et al., 2002). Basically, the objects in the same
cluster are close to each other but the distances between centers of different
clusters are large. At last, if the distance of two objects is great or the p-
value is small enough, then we can say that these elements are distinct.
A center spectrum defined for binning scheme in (Chen, 2004) can be used
for clustering as well.

As an example, we consider the MALDI TOF MS data set of 50 patients
collected at VICC. The tissue sample consists of normal samples and cancer
samples of Adeno, squamous, large, and other cancers. We apply the clus-
tering analysis to the 1628 × 50 matrix, and then compared the results of
clustering with the real data distribution.

Figures 6 and 7 show the results using the hierarchical clustering with
the Euclidean distance and correlation distance, respectively.

Fig. 6. Hierarchical trees by Euclidean distance.
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Fig. 7. Hierarchical trees by correlation distance.

Table 1. Lung cancer patients data
distribution.

Labels Cancer types

1–14 Adeno cancer
15–29 Squamous cancer
30–34 Large cancer
35–39 Meta-cancer
39–42 Other cancers
43–50 Normal

From the hierarchical trees, we can see that the clustering results match
almost perfectly the real distribution data. In addition, the correlation
method seems having a better performance (see Figures 6, 7, and Table 1
for comparison).

Also, when we exam the distinct elements of the normal and cancer
cluster, we find that the rows: 38, 350, 356 are most significantly dif-
ferent and the p-values of them, which was provided by MatLab clustering
program, are 0. Moreover, rows 38, 350, 356, 953, 986, and 991 are relatively
distinct. That means these proteins are very likely different disease-related.
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