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Professor of Mathematics and Biophysics, University of California at
Berkeley.

Programmed and operated John von Neumann’s pioneering computer at
Princeton in 1955. Early researches into the physical limitations of
computer processes influenced theoretical cybernetics and emphasized
the importance of the modern theory of computational complexity.

Recent research has been concerned to some extent with complexity
theory, but is mostly concerned with understanding naturally occurring
“computers” and efficient methods of solving cybernetic problems.

COMPLEXITY AND
TRANSCOMPUTABILITY
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In this essay I wish to point out serious limitations to the ability of computers to carry out
enough computations to solve certain mathematical and logical problems. The same limitations
also apply to data processing by nerve nets, and thus ultimately to human thought processes.

The present era has seen advances in computing that are no less spectacular than advances in
space travel, Today a single computer can do more arithmetic operations in a year, than all of
mankind has done from its beginnings till 1945 when the first electronic computer became
operational. I will show in the following that this achievement is insignificant when measured
against the vastness of what one might call the “mathematical universe”.

Computers are physical devices and as such are subject to and limited by the laws of physics.
For example, no signal can travel faster than light in vacuum (3 X 10® m/sec) and this
restriction applies especially to signals inside a computer. Let Tgyisch be the switching time of
computer components. (In the fastest computers 7gyitch is of the order of 107 to 107 sec (1
to 10 nanoseconds).) The travel time of signals between different parts of a computer is
determined by the distance a signal has to travel. That means Ty 61 = distance/velocity =
distance/light velocity.

The travel time of signals between different parts of a computer should not exceed the
switching time. Otherwise travel time would be the limiting factor in the speed of the

computer.
> distance/light velocity. Hence, the distance between different parts

Hence Tgyitch Z Tiravel =
of the computer is bounded by Tgyjech X 3 X 108 m/sec = distance. Thus, if 7o ¢ 18 107 sec,
the distances in the computer are limited to 30 cm. In other words, the entire computer must
be quite small. For Teyitch = 10 sec the maximum size would be 3 cm, etc.

Size and signal speeds are not the only limitations. More fundamental are the following: The
different components of a computer communicate with each other by signals. The reception
and interpretation of a signal constitutes a physical measurement. Physical measurements are
governed by the uncertainty principle of quantum mechanics. One can show: the faster the
measurement the larger is the energy that is required to make the signal readable with
sufficiently small error probability. If the total signalling energy is limited, then there is a
trade-off between the number of distinguishable signals that can be sent and the time required
to identify them. It is customary to call the logarithm (base 2) of the number of distinguishable
messages the information content (measured in bits (binary digits)). It turns out that for given
energy the amount of information that can be sent is proportional to time. The proportionality
factor is given by E/h [sec’']. Where E is the energy, h is Planck’s constant. The amount of
signal flow (in bits/sec) in a computer is thus limited by E[h, where E is the energy available for
signalling. (Bremermann, 1962, 1967, 1978; R. Thom, 1972, p. 143 (English translation Thom,
1975).)

This fundamental limit of data processing applies to computers, irrespective of the details of
their construction. It can even be extended to computers other than digital machines (and thus
becomes applicable to data processing by nerve nets). We will return to this question later.

Granted that computers are thus limited, what does it mean? Is the fundamental limit a
serious barrier to computations of practical importance, or is it a subtlety without significant
implications? To answer this question one must know something about the computational

requirements of mathematical problems.

COMPLEXITY OF COMPUTATIONS

What exactly is the role of computation in mathematical problems? This question has been
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asked in earnest only in recent years. Very few results have been published prior to 1962, but
since 1968 many papers have appeared that deal with this subject.

It will be useful to consider some specific examples before we attempt to examine the
general question. Consider a system of two linear equations in two unknowns:

appxy +axg =by,
agixy +agx, =by.

If a;; # 0 we multiply the first equation by asj/a1; and subtract it from the second which
gives

aypxy tapxy = by,
(@92 — aypanfan)xs = by —biag/an.

Solving for x,, substituting the result in the first equation and solving for x, requires
altogether nine arithmetic operations.

If we have three linear equations in three unknowns we may proceed analogously. Multiply
the first equation with ag/a;; (provided ap # 0) and substract it from the second. Multiply
with as;/a;; and subtract it from the third. This reduces the second and third equation to a
system of two equations in two unknowns which we solve as before.

The analogous method can be applied to four, five, any number of linear equations. It is
known as Gaussian elimination and it is an example of what mathematicians call an algorithm.
An algorithm is a method that takes the data that come with the problem (in our case the
coefficients ayy, ays - - .) and transforms them step by step until the numbers are obtained that
constitute the solution of the problem (in our example the values of x;, . ..x, if we have n
linear equations). It can be shown that the number of arithmetic operations required to carry
out the Gaussian elimination algorithm is %n®+%n® - Yn

We may call this number the computational cost of the algorithm. As the number of
equations, #, increases, the cost goes up, and it goes up faster than n. According to our formula
the dominant term is % #°, thus the computational cost (as measured in terms of arithmetic
operations) increases as the third power of the number of equations.

There are other methods to solve systems of linear equations. For example, Cramer’s rule
which computes xy, ...x, by means of determinants, and in turn there are algorithms for
computing determinants. The popular algorithms of computing determinants by developing
them with respect to the elements of a row or column multiplied with smaller subdeterminants
have a computational cost of the order of n! =n(n —1)(n —2)...1. The number n! increases
much faster than .

When we implement an algorithm on a computer we must see to it that the computational
cost of an algorithm does not exceed the number of arithmetic operations that a computer can
carry out within a reasonable span of time. Before the advent of electronic computers, the
computational capacity of existing machines and of hand computation by humans was quite
limited.

Early electronic computers could perform 100 to 1000 arithmetic operations per second.
Today’s computers have reached performance rates of between 10 and 100 million arithmetic
operations per second, or less than 10%® arithmetic operations per day. If we use Gaussian
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elimination, we thus can at most solve v/(3 X 10%%) & 3 x 10* linear equations in a day. (The
current monetary cost of a day of computer time may run as high as £10,000.) (In practice the
maximum number of linear equations that can be solved is smaller than 3 X 10* because of
round-off errors that are introduced, since numbers must be limited to a fixed number of
digits.)

To increase the number of linear equations that can be solved we may explore the possibility
of (a) algorithms that require fewer arithmetic operations and (b) computers of greater speed.
These two questions are quite different; we will first discuss question (a).

As we have seen, there is an algorithm for solving linear equations that requires of the order
of n! arithmetic operations. This algorithm is worse than Gaussian elimination because n! grows
much faster than %#®. In fact, by the mid-1960s Gaussian elimination had empirically proven
itself as the best all-purpose algorithm for solving linear equations. Can this be proven
rigorously ?

This is not an easy task. For each # we must determine the minimum of the computational
costs ofall possible algorithms that solve systems of # linear equations. Since the computational
cost of any algorithm is positive or at most zero, the computational costs of all algorithms are
bounded below by zero. Therefore, for each # the minimum exists. It is some integer between 0
and % n° + 3% n? - % n

In the mid-sixties some mathematicians conjectured that Gaussian elimination is indeed the
best algorithm for solving linear equations and tried to prove that this is the case. However, in
1968 V. Strassen (then at Berkeley, now in Ziirich) described an algorithm which for large 7 has
a lower computational cost than Gaussian elimination. Its computational cost is less than
4.7 nlog: 7 and logy 7 = 2.807. For large » this number is less than % #3. Strassen did not
prove that his algorithm is the best of all possible algorithms. His result provides a better upper
bound for the minimal cost. It can easily be shown that any algorithm requires at least n®
arithmetic operations (in the worst case). Thus, we have the minimal computational cost
bounded by n? below and by 4.7#%%%7 above (Strassen, 1969).

So far we have considered a single mathematical task, namely solving systems of # linear
equations in # unknowns. There are numerous other tasks of widespread interest in applications,
such as finding the roots of a polynomial, solving systems of non-linear equations, optimizing a
function of several variables, computing solutions of differential equations, etc. Operations
research, which analyzes the efficiency of business operations and production processes, has its
share of high cost computational problems. Some of these are known as “travelling salesman
problem”, “allocation problem”, “shortest path problem”, etc. It would take us too far to
explain all of these problems in detail. The reader is referred to textbooks on operations
research or to the paper of Karp-(1972) which describes these and other problems and their
interrelation in a concise way.

It may suffice to describe one of them, the travelling salesman problem, which is as follows:
given n+l cities A, A, Az, ... A,, any pair of cities has a distance between them. Suppose a
salesman wants to visit each city exactly once, except A, the city from which he started and to
which he wishes to return at the end of his trip. The problem is to find that routing of his trip
which minimizes his total mileage; that is, the sum of the distances between the cities that he
has visited. Each routing is given by a sequence: A, A;,... 4, A where Aj;, ... A; is a
permutation of the cities A, ... Ay, and A is the city where the trip starts and ends. There are
n! such permutations, and hence the problem can be solved by examining n! mileage sums and
picking the minimum. Picking the minimum of N numbers can be done with N—1 comparisons.
Thus we could solve the problem at the cost of n! comparisons between numbers (and an
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additional arithmetic cost of computing the mileage sums). This method, however, is not
practical for large n. For example, for n = 100 we have (by a formula known as Stirling’s
formula):

100
nl=100!>+/(200m) 1—2(—)~ , where e = 2.718.

This computational cost exceeds the capacity of any computing resource on earth.

Better algorithms than the one just described are known, but all known algorithms have a
computational cost which increases faster than any finite power of 7, where 7 is the number of
cities. The problem of whether there exist algorithm whose computational cost is bounded by
some polynomial in 7, for all #, is unsolved. (If such an algorithm exists the problem is called
polynomial. Whether the travelling salesman problem is polynomial is a famous unsolved
problem, and lately Karp (1972) has shown that in this respect many of the problems of
operations research are tied together. Either they are all polynomial or none of them is.)

The theory of the computational costs of mathematical numerical problems is known as
complexity theory. Before 1959 it was virtually non-existent. In recent years it has made giant
strides and it is developing into an entirely new branch of mathematics and theoretical
computer science. For a sampling of recent results the reader is referred to Miller and Thatcher
(1972). (Some further discussion of complexity problems is also contained in Bremermann
(1974) and in the author’s forthcoming lecture notes on biological algorithms (1978).)

For many practical mathematical, engineering and accounting tasks the computational costs
of available algorithms and the capacities of available computers are satisfactory, but there are
exceptions. We already mentioned operations research. Another area of difficulty is the
numerical solution of large systems of differential equations, especially differential equations
that are stiff. (That is, systems that combine processes of greatly differing speeds.) Partial
differential equations pose a problem, as do the ab initio calculations of molecular
configurations from Schrodinger’s equation.

In another area, artificial intelligence, the excessive computational cost of known algorithms
has been the main obstacle to having, for example, computers play perfect games of chess (or
checkers, or Go). If at each move a player has k choices, then # moves comprise k" possible
move sequences. This number grows exponentially with »n. For some games (like Nim) there are
shortcuts that eliminate the need for searching through all the alternative move sequences.
However, for chess (a game that is considered a true intellectual challenge and not mere child’s
play) such shortcuts have never been found. All known algorithms involve search through an
exponentially growing number of alternatives and this number, when search is pursued to the
end of the game, exceeds the power of any computing device.

A similar situation prevails in mathematical logic and in other branches of mathematics
where there are formalized proof procedures. The search for the proof of a (conjectured)
theorem always seems to involve search through an exponentially growing sequence of
alternatives of formula transformations. Quite generally: most artificial intelligence problems
require computing in amounts that grow exponentially with the depth of the search. The
required search effort, in most cases, exceeds any available computing resource before it has
reached sufficient depth to solve the problem (cf. Nilsson, 1971).

In summary: many mathematical, logical, and artificial intelligence problems cannot now be
solved because the computational cost of known algorithms (and in some cases of all possible
algorithms) exceeds the power of any existing computer.
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THE FUNDAMENTAL LIMIT OF DATA PROCESSING

Granted that certain problems cannot be solved with existing computers, may we expect
that eventually all problems will become solvable through advances in computer technology?

Computer performance has indeed increased dramatically since 1945, when ENIAC became
operational. However, as I indicated in the introduction, computer performance cannot be
improved indefinitely. The signal flow in a computer is limited by E/h [bits/sec], where E is the
energy available for signalling. How serious is this limit?

It is easy to derive an ultimate upper bound. This bound is not meant to be realistic in the
sense that it would seem practically possible to build computers that come close to this bound.
Practical bounds would be much harder to derive. Thus our fundamental limit is merely a far
out yardstick beyond which improvement cannot go. It is comparable to saying: astronauts
cannot travel at speeds exceeding the light velocity, though in practice their speeds are much
more limited. Estimates of realistic limits of the speed of space travel would be much harder to
derive, having to take into consideration rocket technology, etc.

As Einstein first observed, there is an equivalence relation between mass and energy. Energy
has mass, and mass, if converted, yields energy in the amount of E = mc?, where ¢ is the
velocity of light in vacuum and m is the mass that is being converted. An atomic power plant is,
in fact, a device for converting mass to energy.

Consider now a closed computing system, with its own power supply. Let m be the total
mass of the system. This includes the mass equivalent of the energy of signals employed in the
computer, while another share of the total mass is contained in the materials of which the
computer and its power supply are made. ,

In existing computers the structural mass by far outweighs the mass equivalent of the signal
energy. It would be difficult, however, to derive a realistic upper bound for this ratio. Thus, in
order to avoid complicated arguments, we simply observe. The total mass equivalent of the
energy that is invested in signals cannot exceed m, where m is the total mass of the system.

By combining this limit with the fundamental limit of the data processing we obtain:

No closed computer system, however constructed, can have an internal signal flow that
exceeds mc? [l bits per second. (Here m is the total mass of the system, ¢ the velocity of light in
vacuum and  is Planck’s constant.)

This limit was derived by the author in 1961 (see Bledsoe, 1961; Bremermann, 1962). An
improved argument was given by the author, Bremermann, 1967. A new discussion is to be
contained in Bremermann, 1978.

The numerical value of ¢?/k is 1.35x10%7 (bits per second per gram). The number is large or
small, depending upon the perspective. Existing computers process no more than ~ 10* to 10°
bits per second per gram, and the fundamental limit appears much too large for practical
purposes. When compared with the complexity of some algorithms, however, the limit appears
small. The limited age and the limited size of the Universe constitute (far out) outer limits to
computing. Again we choose these very unrealistic outer limits to avoid complicated arguments
that could be made in order to establish more realistic and stringent bounds to the product of
mass and time that could be considered as available for computing. Current estimates of the age
of the physical universe run to about 20 billion years, that is 2 X 10 years or 6.3 x 107 sec.
The total mass of the Universe is estimated as about 10%° gs. Thus we have 6.3 X 107 gram
seconds as an outer limit for the mass time product.
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TRANSCOMPUTABLE ALGORITHMS

We call an algorithm transcomputable if its computational cost exceeds all bounds that
govern the physical implementation of algorithms.

It can be shown that the exhaustive search algorithm for chess is transcomputable. The same
is true for many algorithms of artificial intelligence and operations research. In fact, any
algorithm whose computational cost grows exponentially with a size parameter # is
transcomputational for all but the first few integers #.

This is a rather disturbing thought and many people have chosen to ignore it. (Analogously
many people have for a long time chosen to ignore the fact that earthly resources of space, air,
fossil energy and raw materials are limited.) One exception to this trend has been Ross Ashby,
who more than any person in the world has emphasized the consequences of this limit in many
of his writings between 1962 and his death in 1972 (cf. Ross Ashby, 1967, 1968, 1972).*

Another kind of limitation to computation is thermodynamic. R. Laundauer (1961) has
pointed out that when in the course of computation information is discarded entropy is
generated which must be dissipated as heat. How much information must be discarded when
computations are carried out? Initially this question was not well understood. Recently Bennett
(1973) has shown that any computation can be carried out essentially in a logically reversible
way which implies that it can be done with little or no entropy generation (cf. also Landauer,
1976). In Landauer and Woo (1973) both thermodynamic and quantum limitations are
discussed and an extensive bibliography is given. There are many open questions.

So far we have stated the fundamental limit for signal flow in a computer. Readers may
wonder whether there would be an escape from the limit if we consider larger classes of
computers — analogue computers, special-purpose circuitry (hardwave simulations), etc. This is
not the case. In a forthcoming article I am trying to show that the limit applies to any physical
implementation of any kind of algorithm. In essence, the fundamental limit is identical with the
uncertainty principle of quantum mechanics.

In particular, the limit applies to nerve nets, and thus, ultimately, it imposes limits on human

" intelligence. This statement presupposes that the human brain is subject to the laws of physics

and that it cannot solve logical and mathematical problems without implementing algorithms.

We may compare the phenomenon of transcomputability with limitations that apply to
space travel. In order to reach a distant point in space the traveller has to perform a motion
which requires time and energy. Since both are in limited supply the accessible portion of the
Universe is limited. Analogously, in order to reach knowledge of mathematical theorems,
optimal moves in a (mathematical) game, or in order to explore the trajectories of differential
equations, etc., computations must be performed which require time and energy. Since both are
in limited supply the accessible portion of the mathematical universe is limited.

The fundamental limit has epistemological consequences, for example the following: many
systems (biological or physical) are composed of parts. The interactions between parts obey
certain laws (e.g. gravitational interaction between mass points, electromagnetic, weak, strong
interactions between elementary particles, chemical interactions between molecules, etc.). The
reductionist approach tries to derive the total system behavior (the trajectory of the system in
its state space) from the laws that govern the interactions of the component parts and from the
initial state and inputs to the system. For complex systems knowledge of the systems

* Note added in print: Recently Knuth (1976) has written an article in Science that clearly explains
the dual problems of complexity and “Ultimate Limitations” of computing (which he derives in a different
way).
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trajectories can be transcomputational with respect to sequential digital computation. In that
case, if an analog of the system can be obtained, put in the proper initial state and if the state
of the system can be observed, then the system trajectories are predictable, provided that the
analog system runs faster than the original. If no such analog system is obtainable, then
prediction becomes impossible, even if all the parts and the laws governing their interactions are
known.
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